library(akfishcondition)
library(tidyverse)
library(ggpubr)
dat <- akfishcondition:::AI_INDICATOR$STRATUM |>
dplyr::select(year, common_name, inpfc_stratum, stratum_resid_mean, stratum_resid_se) |>
dplyr::inner_join(akfishcondition:::AI_INDICATOR$FULL_REGION |>
dplyr::select(year, common_name, mean_wt_resid, se_wt_resid, vast_relative_condition, vast_relative_condition_se)) |>
dplyr::filter(common_name %in% akfishcondition::ESR_SETTINGS$ESR_SPECIES$common_name[akfishcondition::ESR_SETTINGS$ESR_SPECIES$AI])
unique_spp <- unique(dat$common_name)
pdf(here::here("output", "AI", "AI_SBW_STRATUM_vs_VAST_scatterplot.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
if(unique_spp[ii] != "walleye pollock (100–250 mm)") {
print(
ggplot(data = dat |>
dplyr::filter(common_name == unique_spp[ii]),
aes(x = vast_relative_condition,
y = stratum_resid_mean,
xmin = vast_relative_condition - 2*vast_relative_condition_se,
xmax = vast_relative_condition + 2*vast_relative_condition_se,
ymin = stratum_resid_mean - 2*stratum_resid_se,
ymax = stratum_resid_mean + 2*stratum_resid_se)) +
geom_point() +
geom_errorbar() +
geom_errorbarh() +
ggpubr::stat_cor(na.rm = TRUE) +
ggtitle(label = unique_spp[ii]) +
facet_wrap(~akfishcondition::set_stratum_order(inpfc_stratum, region= "AI"),
ncol = 2) +
scale_x_continuous(name = "VAST relative condition (all regions)") +
scale_y_continuous(name = "Mean stratum residual (region-specific)") +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5))
)
}
}
dev.off()
pdf(here::here("output", "AI", "AI_SBW_STRATUM_vs_VAST_timeseries.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
if(unique_spp[ii] != "walleye pollock (100–250 mm)") {
print(
akfishcondition::plot_two_timeseries(x_1 = dat |> dplyr::filter(common_name == unique_spp[ii]),
x_2 = dat |> dplyr::filter(common_name == unique_spp[ii]),
region = "AI",
series_name_1 = "VAST relative condition (all strata)",
series_name_2 = "Mean stratum residual (stratum-specific)",
var_y_name_1 = "vast_relative_condition",
var_y_name_2 = "stratum_resid_mean",
var_group_name = "inpfc_stratum",
y_title = "Condition (Z-score)",
fill_title = "Method",
scale_y = TRUE,
year_break = NULL,
x_offset = 0.25,
fill_colors = c("red", "black"),
shapes = c(24, 21),
format_for = "png"
) +
ggtitle(unique_spp[ii]) +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5),
legend.position = "bottom")
)
}
}
dev.off()
### Stratum trends
pdf(here::here("output", "AI", "AI_SBW_STRATUM_vs_REGION_scatterplot.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
if(unique_spp[ii] != "walleye pollock (100–250 mm)") {
print(
ggplot(data = dat |>
dplyr::filter(common_name == unique_spp[ii]),
aes(x = mean_wt_resid,
y = stratum_resid_mean,
xmin = mean_wt_resid - 2*se_wt_resid,
xmax = mean_wt_resid + 2*se_wt_resid,
ymin = stratum_resid_mean - 2*stratum_resid_se,
ymax = stratum_resid_mean + 2*stratum_resid_se)) +
geom_point() +
geom_errorbar() +
geom_errorbarh() +
ggpubr::stat_cor(na.rm = TRUE) +
ggtitle(label = unique_spp[ii]) +
facet_wrap(~akfishcondition::set_stratum_order(inpfc_stratum, region= "AI"),
ncol = 2) +
scale_x_continuous(name = "VAST relative condition (all regions)") +
scale_y_continuous(name = "Mean stratum residual (region-specific)") +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5))
)
}
}
dev.off()
pdf(here::here("output", "AI", "AI_SBW_STRATUM_vs_REGION_timeseries.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
if(unique_spp[ii] != "walleye pollock (100–250 mm)") {
print(
akfishcondition::plot_two_timeseries(x_1 = dat |> dplyr::filter(common_name == unique_spp[ii]),
x_2 = dat |> dplyr::filter(common_name == unique_spp[ii]),
region = "AI",
series_name_1 = "VAST relative condition (all strata)",
series_name_2 = "Mean stratum residual (stratum-specific)",
var_y_name_1 = "mean_wt_resid",
var_y_name_2 = "stratum_resid_mean",
var_group_name = "inpfc_stratum",
y_title = "Condition (Z-score)",
fill_title = "Method",
scale_y = TRUE,
year_break = NULL,
x_offset = 0.25,
fill_colors = c("red", "black"),
shapes = c(24, 21),
format_for = "png"
) +
ggtitle(unique_spp[ii]) +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5),
legend.position = "bottom")
)
}
}
dev.off()
# EBS ----
dat <- akfishcondition::EBS_INDICATOR$STRATUM |>
dplyr::select(year, common_name,stratum, stratum_resid_mean, stratum_resid_se) |>
dplyr::inner_join(akfishcondition:::EBS_INDICATOR$FULL_REGION |>
dplyr::select(year, common_name, mean_wt_resid, se_wt_resid, vast_relative_condition, vast_relative_condition_se)) |>
dplyr::filter(common_name %in% akfishcondition::ESR_SETTINGS$ESR_SPECIES$common_name[akfishcondition::ESR_SETTINGS$ESR_SPECIES$EBS])
unique_spp <- unique(dat$common_name)
pdf(here::here("output", "EBS", "EBS_SBW_STRATUM_vs_VAST_scatterplot.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
print(
ggplot(data = dat |>
dplyr::filter(common_name == unique_spp[ii]),
aes(x = vast_relative_condition,
y = stratum_resid_mean,
xmin = vast_relative_condition - 2*vast_relative_condition_se,
xmax = vast_relative_condition + 2*vast_relative_condition_se,
ymin = stratum_resid_mean - 2*stratum_resid_se,
ymax = stratum_resid_mean + 2*stratum_resid_se)) +
geom_point() +
geom_errorbar() +
geom_errorbarh() +
ggpubr::stat_cor(na.rm = TRUE) +
ggtitle(label = unique_spp[ii]) +
facet_wrap(~akfishcondition::set_stratum_order(stratum, region= "BS"),
ncol = 2) +
scale_x_continuous(name = "VAST relative condition (all regions)") +
scale_y_continuous(name = "Mean stratum residual (region-specific)") +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5))
)
}
dev.off()
pdf(here::here("output", "EBS", "EBS_SBW_STRATUM_vs_VAST_timeseries.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
print(
akfishcondition::plot_two_timeseries(x_1 = dat |> dplyr::filter(common_name == unique_spp[ii]),
x_2 = dat |> dplyr::filter(common_name == unique_spp[ii]),
region = "BS",
series_name_1 = "VAST relative condition (all strata)",
series_name_2 = "Mean stratum residual (stratum-specific)",
var_y_name_1 = "vast_relative_condition",
var_y_name_2 = "stratum_resid_mean",
var_group_name = "stratum",
y_title = "Condition (Z-score)",
fill_title = "Method",
scale_y = TRUE,
year_break = NULL,
x_offset = 0.25,
fill_colors = c("red", "black"),
shapes = c(24, 21),
format_for = "png"
) +
ggtitle(unique_spp[ii]) +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5),
legend.position = "bottom")
)
}
dev.off()
### Stratum trends
pdf(here::here("output", "EBS", "EBS_SBW_STRATUM_vs_REGION_scatterplot.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
print(
ggplot(data = dat |>
dplyr::filter(common_name == unique_spp[ii]),
aes(x = mean_wt_resid,
y = stratum_resid_mean,
xmin = mean_wt_resid - 2*se_wt_resid,
xmax = mean_wt_resid + 2*se_wt_resid,
ymin = stratum_resid_mean - 2*stratum_resid_se,
ymax = stratum_resid_mean + 2*stratum_resid_se)) +
geom_point() +
geom_errorbar() +
geom_errorbarh() +
ggpubr::stat_cor(na.rm = TRUE) +
ggtitle(label = unique_spp[ii]) +
facet_wrap(~akfishcondition::set_stratum_order(stratum, region= "BS"),
ncol = 2) +
scale_x_continuous(name = "VAST relative condition (all regions)") +
scale_y_continuous(name = "Mean stratum residual (region-specific)") +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5))
)
}
dev.off()
pdf(here::here("output", "EBS", "EBS_SBW_STRATUM_vs_REGION_timeseries.pdf"), onefile = TRUE)
for(ii in 1:length(unique_spp)) {
print(
akfishcondition::plot_two_timeseries(x_1 = dat |> dplyr::filter(common_name == unique_spp[ii]),
x_2 = dat |> dplyr::filter(common_name == unique_spp[ii]),
region = "BS",
series_name_1 = "VAST relative condition (all strata)",
series_name_2 = "Mean stratum residual (stratum-specific)",
var_y_name_1 = "mean_wt_resid",
var_y_name_2 = "stratum_resid_mean",
var_group_name = "stratum",
y_title = "Condition (Z-score)",
fill_title = "Method",
scale_y = TRUE,
year_break = NULL,
x_offset = 0.25,
fill_colors = c("red", "black"),
shapes = c(24, 21),
format_for = "png"
) +
ggtitle(unique_spp[ii]) +
theme_blue_strip() +
theme(plot.title = element_text(hjust = 0.5),
legend.position = "bottom")
)
}
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.