library(akfishcondition)
library(ggthemes)
library(coldpool)
spp_folders <- list.files(here::here("results", "goa"))
spp_paths <- list.files(here::here("results", "goa"), full.names = TRUE)
old_condition_df <- data.frame()
unique_species <- unique(akfishcondition::GOA_INDICATOR$FULL_REGION$common_name)
for(kk in 1:length(unique_species)) {
old_condition_df <- old_condition_df %>%
dplyr::bind_rows(akfishcondition::GOA_INDICATOR$FULL_REGION %>%
dplyr::filter(common_name == unique_species[kk]) |>
dplyr::mutate(scaled_mean_wt_resid = scale(mean_wt_resid)[,1]))
}
vast_condition_df <- data.frame()
for(jj in 1:length(spp_paths)) {
if(file.exists(here::here("results", "goa", spp_folders[jj], "index.csv"))) {
vast_condition_df <- vast_condition_df %>%
dplyr::bind_rows(
read.csv(file = here::here("results", "goa", spp_folders[jj], "index.csv")) |>
dplyr::filter(Category == "Condition (grams per cm^power)", Time %in% unique(old_condition_df$year)) |>
dplyr::filter(Estimate < 0.9) |>
dplyr::mutate(species_code = as.numeric(spp_folders[jj])) %>%
dplyr::rename(year = Time) %>%
dplyr::mutate(scaled_condition = scale(Estimate)[,1])
)
}
}
combined_condition_df <- vast_condition_df %>%
dplyr::inner_join(read.csv(file = system.file("/extdata/species_by_region.csv", package = "akfishcondition")) %>%
dplyr::filter(region == "GOA")) %>%
dplyr::inner_join(old_condition_df )
ggplot(data = combined_condition_df,
aes(x = scaled_mean_wt_resid,
y = scaled_condition,
color = common_name)) +
geom_point() +
geom_smooth(method = 'lm') +
scale_x_continuous(name = "Stratum-biomass-weighted indicator (Z-score)") +
scale_y_continuous(name = "VAST indicator (Z-score)") +
scale_color_colorblind() +
facet_wrap(~common_name, scales = "free") +
coldpool::theme_multi_map_blue_strip()
png(file = here::here("plots", "goa_vast_vs_saw.png"), width = 7, height = 6, units = "in", res = 300)
print(
ggplot(data = combined_condition_df,
aes(x = mean_wt_resid,
y = Estimate,
ymin = Estimate - Std..Error.for.Estimate*2,
ymax = Estimate + Std..Error.for.Estimate*2,
xmin = mean_wt_resid - se_wt_resid*2,
xmax = mean_wt_resid + se_wt_resid*2)) +
geom_smooth(method = 'lm') +
geom_point() +
geom_errorbar() +
geom_errorbarh() +
scale_x_continuous(name = "Stratum-biomass-weighted indicator") +
scale_y_continuous(name = "VAST indicator") +
facet_wrap(~akfishcondition::set_plot_order(common_name = common_name,
region = "GOA"),
scales = "free") +
coldpool::theme_multi_map_blue_strip() +
theme(axis.text = element_text(size = 8),
legend.position = "none")
)
dev.off()
png(file = here::here("plots", "goa_vast_vs_saw_timeseries.png"), width = 7, height = 6, units = "in", res = 300)
print(
ggplot(data = combined_condition_df |>
tidyr::pivot_longer(cols = c("scaled_condition", "scaled_mean_wt_resid")),
aes(x = year,
y = value,
fill = factor(name, labels = c("Scaled VAST", "Scaled stratum-area-weighted")),
color = factor(name, labels = c("Scaled VAST", "Scaled stratum-area-weighted")))) +
geom_path() +
geom_point(shape = 21) +
scale_x_continuous(name = "Stratum-biomass-weighted indicator (Z-score)") +
scale_y_continuous(name = "VAST indicator (Z-score)") +
scale_fill_manual(values = c("black", "plum")) +
scale_color_manual(values = c("black", "plum")) +
facet_wrap(~common_name, scales = "free") +
coldpool::theme_multi_map_blue_strip() +
theme(axis.text = element_text(size = 8))
)
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.