View source: R/beoutbreakprepared.R
| beoutbreakprepared_data | R Documentation | 
Individual-level data contributed from around the world
beoutbreakprepared_data(quietly = TRUE)
quietly | 
 logical(1) defaults to TRUE. If FALSE, warnings generated during parsing will be displayed. These often relate to nonstandard date values that occur idiosyncratically.  | 
tidy data.frame of content
misckraemer2020epidemiological, author = nCoV-2019 Data Working Group, title = Epidemiological Data from the nCoV-2019 Outbreak: Early Descriptions from Publicly Available Data, howpublished = Accessed on yyyy-mm-dd from http://virological.org/t/epidemiological-data-from-the-ncov-2019-outbreak-early-descriptions-from-publicly-available-data/337, year = 2020
ARTICLEXu2020-wb, title = "Open access epidemiological data from the COVID-19 outbreak", author = "Xu, Bo and Kraemer, Moritz U G and Open COVID-19 Data Curation Group", journal = "The Lancet infectious diseases", volume = 20, number = 5, pages = "534", month = may, year = 2020, url = "http://dx.doi.org/10.1016/S1473-3099(20)30119-5", file = "All Papers/X/Xu et al. 2020 - Open access epidemiological data from the COVID-19 outbreak.pdf", language = "en", issn = "1473-3099, 1474-4457", pmid = "32087115", doi = "10.1016/S1473-3099(20)30119-5", pmc = "PMC7158984"
This is individual level data, collected from diverse sources. Data may be messy and we have made limited attempts at clean up.
https://github.com/beoutbreakprepared/nCoV2019
Other data-import: 
acaps_government_measures_data(),
acaps_secondary_impact_data(),
apple_mobility_data(),
cci_us_vaccine_data(),
cdc_aggregated_projections(),
cdc_excess_deaths(),
cdc_social_vulnerability_index(),
coronadatascraper_data(),
coronanet_government_response_data(),
cov_glue_lineage_data(),
cov_glue_newick_data(),
cov_glue_snp_lineage(),
covidtracker_data(),
descartes_mobility_data(),
ecdc_data(),
econ_tracker_consumer_spending,
econ_tracker_employment,
econ_tracker_unemp_data,
economist_excess_deaths(),
financial_times_excess_deaths(),
google_mobility_data(),
government_policy_timeline(),
jhu_data(),
jhu_us_data(),
kff_icu_beds(),
nytimes_county_data(),
oecd_unemployment_data(),
owid_data(),
param_estimates_published(),
test_and_trace_data(),
us_county_geo_details(),
us_county_health_rankings(),
us_healthcare_capacity(),
us_hospital_details(),
us_state_distancing_policy(),
usa_facts_data(),
who_cases()
Other case-tracking: 
align_to_baseline(),
bulk_estimate_Rt(),
combined_us_cases_data(),
coronadatascraper_data(),
covidtracker_data(),
ecdc_data(),
estimate_Rt(),
jhu_data(),
nytimes_county_data(),
owid_data(),
plot_epicurve(),
test_and_trace_data(),
usa_facts_data(),
who_cases()
Other individual-cases: 
cov_glue_lineage_data(),
cov_glue_newick_data()
res = beoutbreakprepared_data() colnames(res) head(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.