# load isorun library library(isorunN2O)
Load data, assign categories, evaluate drift, correct for O17.
# processing step1 data.raw <- %s # select which columns to keep: select_columns(folder, date, analysis, run_number, category, name, volume, area, d45, d46, quiet = TRUE) %%>%% # identify excluded analyses change_category(run_number %%in%% c(%s), "excluded") %%>%% # drift correction evaluate_drift( d45, d46, correct = %s, plot = TRUE, method = "%s", span = %s, correct_with = category %%in%% c(%s)) %%>%% # O17 correction correct_N2O_for_17O(d45.drift, d46.drift) %%>%% # introduce groupings for the lab reference, standard 1 & 2 left_join( bind_rows( data_frame(category = c(%s), group = "Lab ref"), data_frame(category = c(%s), group = "Standard 1"), data_frame(category = c(%s), group = "Standard 2") ), by = "category" ) %%>%% # introduce color and paneling for easier plotting mutate( panels = factor(group, levels = c("Lab ref", "Standard 1", "Standard 2")), colors = ifelse(group %%in%% c("Standard 1", "Standard 2"), name, category))
Here for d15.raw but could use others.
# static plot data.raw %%>%% plot_overview(d15.raw, color = colors, panel = panels) # make into interactive version make_interactive()
Here for d15.raw and d18.raw but could use different ones or more than these two.
# standards data.raw %%>%% # filter raw data to only look at the standards filter(group %%in%% c("Standard 1", "Standard 2")) %%>%% # multie variable plot overview for d15.raw and d18.raw plot_overview(d15.raw, d18.raw, color = colors) + # make use of ggplot's facet_wrap for panelling facet_wrap(panel ~ group, scales = "free", ncol = 2)
Calculate concentrations and calibrate against isotopic standards. This is not implmented in the UI, implement this manually if interested in using.
# data.cal <- data.raw %%>%% # # calculate the background area based on analyses named 'background' # calculate_background(area, criteria = name %%in%% c("background")) %%>%% # # set the background area manually (use this as alternative to calculate_background) # set_background(0.251) %%>%% # # calculate the concentrations based on the standards (here with naming patter XuM) # calculate_concentrations(area, volume, conc_pattern = "(\\d+)uM", # standards = category %%in%% c("USGS-34", "IAEA-NO3")) %%>%% # # calibrate d15 based on the two provided standards # calibrate_d15(d15.raw, standards = c(`USGS-34` = -1.8, `IAEA-NO3` = 4.7)) %%>%% # # calibrate d18 based on the two provided standards # calibrate_d18(d18.raw, cell_volume = 1.5, standards = c(`USGS-34` = -27.93, `IAEA-NO3` = 25.61))
Here for the raw data but could use for calibrated data as well.
# data overview data.raw %%>%% # use grouping to calculate averages / stdevs for each group group_by(category) %%>%% # include d15.raw and d18raw as well as the area and include all samples generate_data_table(d15.raw, d18.raw, area, cutoff = 3) %%>%% # sort data ungroup() %%>%% arrange(desc(n), category) %%>%% # output in table format knitr::kable(digits = 2)
Example of exporting specific parts of the data
# export data data.raw %%>%% # example: only select columns not starting with p. (parameter columns) select(-starts_with("p.")) %%>%% # sorting arrange(category, name) %%>%% # export to excel openxlsx::write.xlsx(file = "export.xlsx")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.