plotHeatmap | R Documentation |
Plot a heatmap where rows are cells, columns are genome coordinates and colours map to (allele-specific) copy-number states
plotHeatmap(
cn,
tree = NULL,
clusters = NULL,
annotations = NULL,
normalize_ploidy = FALSE,
normalize_tree = FALSE,
branch_length = 1,
spacer_cols = 20,
plottree = TRUE,
plotcol = "state",
reorderclusters = FALSE,
pctcells = 0.05,
library_mapping = NULL,
clone_pal = NULL,
sample_label_idx = 1,
fillna = TRUE,
frequencycutoff = 2,
frequency_bar_width = 0.5,
maxf = NULL,
plotfrequency = FALSE,
frequency_height = 1.4,
show_legend = TRUE,
show_library_label = TRUE,
show_clone_label = TRUE,
show_clone_text = TRUE,
widenarm = FALSE,
umapmetric = "euclidean",
chrlabels = TRUE,
labeladjust = -5,
SV = NULL,
seed = NULL,
nticks = 4,
Mb = TRUE,
fillgenome = FALSE,
annotation_height = NULL,
annofontsize = 10,
na_col = "white",
linkheight = 2.5,
newlegendname = NULL,
str_to_remove = NULL,
maxCNcol = 11,
anno_width = 0.4,
rasterquality = 15,
tree_width = 4,
ladderize = TRUE,
...
)
cn |
Either a hscn object or a single cell allele specific copy number dataframe with the following columns: 'cell_id', 'chr', 'start', 'end', 'state', 'copy' |
tree |
Tree in newick format to plot alongside the heatmap, default = NULL |
clusters |
data.frame assigning cells to clusters, needs the following columns 'cell_id', 'clone_id' default = NULL |
annotations |
Optional dataframe containing cell_id column and additional annotation columns |
normalize_ploidy |
Normalize ploidy of all cells to 2 |
normalize_tree |
default = FALSE |
branch_length |
scales branch lengths to this size, default = 2 |
spacer_cols |
number of empty columns between chromosomes, default = 20 |
plottree |
Binary value of whether to plot tree or not, default = TRUE |
plotcol |
Which column to colour the heatmap by, should be one of "state", "state_BAF", "state_phase", "state_AS", "state_min", "copy", "BAF", "A", "B" |
reorderclusters |
Reorder the cells according to cluster if no tree is specified |
pctcells |
Minimum size of cluster in terms of perecentage of cells in umap clustering |
library_mapping |
Named vector mapping library names to labels for legend |
clone_pal |
pallette to colour clusters by |
sample_label_idx |
default = 1 |
fillna |
Smooth over NA values, default = TRUE |
frequencycutoff |
default = 2 |
frequency_bar_width |
Width of bars for frequency track, default = 0.5 |
maxf |
Max frequency when plotting the frequency track, default = NULL infers this from the data |
plotfrequency |
Plot the frequency track of gains and losses across the genome |
frequency_height |
height of the frequency track if using, default = 1.4 |
show_legend |
plot legend or not, boolean |
show_library_label |
show library label or not, boolean |
show_clone_label |
show clone label or not, boolean |
show_clone_text |
Show small inset labels next to clone/cluster annotation |
widenarm |
Widen the copy number data table to include all bins |
umapmetric |
metric to use in umap dimensionality reduction if no clusters are specified |
chrlabels |
include chromosome labels or not, boolean |
labeladjust |
|
SV |
sv data frame |
seed |
seed for UMAP |
nticks |
number of ticks in x-axis label when plotting a single chromosome |
Mb |
Use Mb ticks when plotting single chromosome |
fillgenome |
fill in any missing bins and add NA to centromeric regions |
annotation_height |
Height of the annotations |
annofontsize |
Font size to use for annotations, default = 10 |
na_col |
colour of NA values |
linkheight |
height of x-axis ticks |
newlegendname |
overwrite default legend name |
str_to_remove |
string to remove from cell_id's when plotting labels |
maxCNcol |
max value for color scale when plotting raw data |
anno_width |
width of left annotations |
rasterquality |
default = 15 |
tree_width |
Width of phylogenetic tree, default = 4 |
ladderize |
ladderize the tree, default = TRUE, same as default in ggtree If clusters are set to NULL then the function will compute clusters using UMAP and HDBSCAN. |
## Not run:
data("haplotypes")
data("CNbins")
haplotypes <- format_haplotypes_dlp(haplotypes, CNbins)
hscn <- callHaplotypeSpecificCN(CNbins, haplotypes, likelihood = "binomial")
plotHeatmap(hscn)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.