######################################################################
# Name of Script - 00_setup-environment.R
# Publication - PCI - Populations & Pathways Matrix
# Original Author - Gaby Carrillo based on the SPSS syntax
# Original Date - July 2022
#
# Note: Only the FY needs to be updated.
#
# Written/run on - R Studio Server
# Version of R - 3.6.1 (2019-07-05) -- "Action of the Toes"
#
# Description of content - Setup environment to run 01_create-data.R
#
# Running time: <1 minute
######################################################################
### 1 - Load packages ----
library(dplyr) # For data manipulation in the "tidy" way
library(janitor) # For 'cleaning' variable names
library(magrittr) # For %<>% operator
library(glue) # For working with strings
library(slfhelper) # For reading ths SLF
library(phsopendata)
library(fs)
#########################################################################
### 2 - Define financial year in short and long format
# ***** THIS IS THE ONLY BIT THAT NEEDS TO BE UPDATED EVERY TIME THE SCRIPT IS RUN # *****
fy <- 2021
fy_long <- "2020/21"
latest_update <- "Jun_2022" #For GP lookup file
lookup_dir <- path("/conf/hscdiip/SLF_Extracts/Lookups")
#########################################################################
### 3 - Create functions
#########################################################################
### To read the Source Linkage Files
individual_slf <- function(){
read_slf_individual(fy, columns = c("anon_chi", "gender", "age", "gpprac", "health_net_cost", "nsu", "preventable_admissions", "preventable_beddays",
"acute_episodes", "acute_daycase_episodes", "acute_inpatient_episodes", "acute_el_inpatient_episodes",
"acute_non_el_inpatient_episodes", "acute_cost", "acute_daycase_cost","acute_inpatient_cost", "acute_el_inpatient_cost",
"acute_non_el_inpatient_cost", "acute_inpatient_beddays", "acute_el_inpatient_beddays", "acute_non_el_inpatient_beddays",
"mat_episodes", "mat_daycase_episodes", "mat_inpatient_episodes", "mat_cost", "mat_daycase_cost", "mat_inpatient_cost",
"mat_inpatient_beddays", "mh_episodes", "mh_inpatient_episodes", "mh_el_inpatient_episodes", "mh_non_el_inpatient_episodes",
"mh_cost","mh_inpatient_cost", "mh_el_inpatient_cost", "mh_non_el_inpatient_cost", "mh_inpatient_beddays",
"mh_el_inpatient_beddays", "mh_non_el_inpatient_beddays", "gls_episodes", "gls_inpatient_episodes",
"gls_el_inpatient_episodes", "gls_non_el_inpatient_episodes", "gls_cost", "gls_inpatient_cost","gls_el_inpatient_cost",
"gls_non_el_inpatient_cost", "gls_inpatient_beddays" , "gls_el_inpatient_beddays", "gls_non_el_inpatient_beddays",
"dd_noncode9_episodes", "dd_noncode9_beddays", "dd_code9_episodes", "dd_code9_beddays", "op_newcons_attendances",
"op_newcons_dnas", "op_cost_attend", "op_cost_dnas","ae_attendances", "ae_cost", "pis_dispensed_items", "pis_cost", "ooh_cases",
"ooh_homev", "ooh_advice", "ooh_dn", "ooh_nhs24", "ooh_other", "ooh_pcc", "ooh_consultation_time", "ooh_cost",
"dn_episodes","dn_contacts", "dn_cost", "cmh_contacts", "ch_cis_episodes", "ch_beddays", "ch_cost", "hc_episodes",
"hc_personal_episodes", "hc_non_personal_episodes", "hc_reablement_episodes", "hc_total_hours", "hc_personal_hours",
"hc_non_personal_hours", "hc_reablement_hours", "hc_total_cost", "hc_personal_hours_cost","hc_non_personal_hours_cost",
"hc_reablement_hours_cost","at_alarms", "at_telecare", "sds_option_1", "sds_option_2", "sds_option_3", "sds_option_4",
"sc_living_alone", "sc_support_from_unpaid_carer", "sc_social_worker", "sc_type_of_housing", "sc_meals", "sc_day_care", "cij_el",
"cij_non_el", "cij_mat", "cij_delay", "arth", "asthma", "atrialfib", "cancer", "cvd", "liver", "copd", "dementia", "diabetes",
"epilepsy","chd", "hefailure", "ms", "parkinsons", "refailure", "lca", "locality", "simd2020v2_hscp2019_quintile", "ur8_2016",
"hri_lcap", "hhg_end_fy", "demographic_cohort","service_use_cohort", "keep_population")) %>%
filter(lca != "") %>%
filter(gpprac != is.na(gpprac)) %>%
#rename some variables
rename(c(
total_cost = health_net_cost,
ae2_cost = ae_cost,
ae2_attendances = ae_attendances,
prescribing_cost = pis_cost,
outpatient_attendances = op_newcons_attendances,
outpatient_cost = op_cost_attend,
maternity_beddays = mat_inpatient_beddays,
urban_rural = ur8_2016,
simd_quintile = simd2020v2_hscp2019_quintile,
hospital_emergency_attendance = cij_non_el,
hospital_elective_attendance = cij_el,
maternity_attendance = cij_mat)) %>%
clean_names()
}
### Categorise patients.
categorise_patients <- function(df){
#hospital_elective_patients
df <- df %>%
mutate(hospital_elective_patients = case_when(
acute_daycase_episodes > 0 ~ 1,
acute_el_inpatient_episodes > 0 ~ 1,
mh_el_inpatient_episodes > 0 ~ 1,
gls_el_inpatient_episodes > 0 ~ 1,
TRUE ~ 0)
)
#hospital_emergency_patients
df <- df %>%
mutate(hospital_emergency_patients = case_when(
acute_non_el_inpatient_episodes > 0 ~ 1,
mh_non_el_inpatient_episodes > 0 ~ 1,
gls_non_el_inpatient_episodes > 0 ~ 1,
TRUE ~ 0)
)
#maternity_patients
df <- df %>%
mutate(maternity_patients = case_when(
mat_episodes > 0 ~ 1,
TRUE ~ 0)
)
#ae2_patients
df <- df %>%
mutate(ae2_patients = case_when(
ae2_attendances > 0 ~ 1,
TRUE ~ 0)
)
#outpatients
df <- df %>%
mutate(outpatients = case_when(
outpatient_attendances > 0 ~ 1,
TRUE ~ 0)
)
#prescribing_patients
df <- df %>%
mutate(prescribing_patients = case_when(
pis_dispensed_items > 0 ~ 1,
TRUE ~ 0)
)
}
### Create LTC flags
ltc_flags <- function(df){
df <- df %>%
mutate(zero_ltc = case_when(
ltc_total == 0 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(one_ltc = case_when(
ltc_total == 1 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(two_ltc = case_when(
ltc_total == 2 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(three_ltc = case_when(
ltc_total == 3 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(four_ltc = case_when(
ltc_total == 4 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(five_ltc = case_when(
ltc_total == 5 ~ 1,
TRUE ~ as.numeric(0)
))
}
#**************************************************************************************
# Create the calculations based on LTC
#**************************************************************************************
ltc_calculations <- function(df){
#Arthritis
df <- df %>%
mutate(arth_cost = case_when(
arth == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(arth_admission = case_when(
arth == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(arth_beddays = case_when(
arth == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(arth_unplanned_beddays = case_when(
arth == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(arth_ae2_attendance = case_when(
arth == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(arth_outpatient_attendance = case_when(
arth == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Asthma
df <- df %>%
mutate(asthma_cost = case_when(
asthma == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(asthma_admission = case_when(
asthma == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(asthma_beddays = case_when(
asthma == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(asthma_unplanned_beddays = case_when(
asthma == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(asthma_ae2_attendance = case_when(
asthma == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(asthma_outpatient_attendance = case_when(
asthma == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
#Atrial Fibrillation
df <- df %>%
mutate(atrialfib_cost = case_when(
atrialfib == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(atrialfib_admission = case_when(
atrialfib == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(atrialfib_beddays = case_when(
atrialfib == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(atrialfib_unplanned_beddays = case_when(
atrialfib == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(atrialfib_ae2_attendance = case_when(
atrialfib == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(atrialfib_outpatient_attendance = case_when(
atrialfib == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Cancer
df <- df %>%
mutate(cancer_cost = case_when(
cancer == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(cancer_admission = case_when(
cancer == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(cancer_beddays = case_when(
cancer == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(cancer_unplanned_beddays = case_when(
cancer == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(cancer_ae2_attendance = case_when(
cancer == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(cancer_outpatient_attendance = case_when(
cancer == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# CVD
df <- df %>%
mutate(cvd_cost = case_when(
cvd == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(cvd_admission = case_when(
cvd == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(cvd_beddays = case_when(
cvd == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(cvd_unplanned_beddays = case_when(
cvd == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(cvd_ae2_attendance = case_when(
cvd == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(cvd_outpatient_attendance = case_when(
cvd == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# liver
df <- df %>%
mutate(liver_cost = case_when(
liver == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(liver_admission = case_when(
liver == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(liver_beddays = case_when(
liver == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(liver_unplanned_beddays = case_when(
liver == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(liver_ae2_attendance = case_when(
liver == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(liver_outpatient_attendance = case_when(
liver == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# COPD
df <- df %>%
mutate(copd_cost = case_when(
copd == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(copd_admission = case_when(
copd == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(copd_beddays = case_when(
copd == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(copd_unplanned_beddays = case_when(
copd == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(copd_ae2_attendance = case_when(
copd == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(copd_outpatient_attendance = case_when(
copd == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Dementia
df <- df %>%
mutate(dementia_cost = case_when(
dementia == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(dementia_admission = case_when(
dementia == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(dementia_beddays = case_when(
dementia == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(dementia_unplanned_beddays = case_when(
dementia == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(dementia_ae2_attendance = case_when(
dementia == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(dementia_outpatient_attendance = case_when(
dementia == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Diabetes
df <- df %>%
mutate(diabetes_cost = case_when(
diabetes == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(diabetes_admission = case_when(
diabetes == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(diabetes_beddays = case_when(
diabetes == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(diabetes_unplanned_beddays = case_when(
diabetes == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(diabetes_ae2_attendance = case_when(
diabetes == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(diabetes_outpatient_attendance = case_when(
diabetes == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Epilepsy
df <- df %>%
mutate(epilepsy_cost = case_when(
epilepsy == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(epilepsy_admission = case_when(
epilepsy == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(epilepsy_beddays = case_when(
epilepsy == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(epilepsy_unplanned_beddays = case_when(
epilepsy == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(epilepsy_ae2_attendance = case_when(
epilepsy == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(epilepsy_outpatient_attendance = case_when(
epilepsy == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Chronic Heart Disease
df <- df %>%
mutate(chd_cost = case_when(
chd == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(chd_admission = case_when(
chd == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(chd_beddays = case_when(
chd == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(chd_unplanned_beddays = case_when(
chd == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(chd_ae2_attendance = case_when(
chd == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(chd_outpatient_attendance = case_when(
chd == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Heart Failure
df <- df %>%
mutate(hefailure_cost = case_when(
hefailure == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(hefailure_admission = case_when(
hefailure == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(hefailure_beddays = case_when(
hefailure == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(hefailure_unplanned_beddays = case_when(
hefailure == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(hefailure_ae2_attendance = case_when(
hefailure == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(hefailure_outpatient_attendance = case_when(
hefailure == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Multiple Sclerosis
df <- df %>%
mutate(ms_cost = case_when(
ms == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(ms_admission = case_when(
ms == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(ms_beddays = case_when(
ms == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(ms_unplanned_beddays = case_when(
ms == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(ms_ae2_attendance = case_when(
ms == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(ms_outpatient_attendance = case_when(
ms == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Parkinson
df <- df %>%
mutate(parkinsons_cost = case_when(
parkinsons == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(parkinsons_admission = case_when(
parkinsons == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(parkinsons_beddays = case_when(
parkinsons == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(parkinsons_unplanned_beddays = case_when(
parkinsons == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(parkinsons_ae2_attendance = case_when(
parkinsons == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(parkinsons_outpatient_attendance = case_when(
parkinsons == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Renal Failure
df <- df %>%
mutate(refailure_cost = case_when(
refailure == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(refailure_admission = case_when(
refailure == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(refailure_beddays = case_when(
refailure == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(refailure_unplanned_beddays = case_when(
refailure == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(refailure_ae2_attendance = case_when(
refailure == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(refailure_outpatient_attendance = case_when(
refailure == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
}
#**************************************************************************************
# Create GP lookup
#**************************************************************************************
# Retrieve the latest resource from the dataset
gp_clusters <- get_dataset("gp-practice-contact-details-and-list-sizes",
max_resources = 20
) %>%
clean_names() %>%
# Get the code lookups so we have the names
# Using the latest version of phsopendata for col_select
tidylog::left_join(get_resource("944765d7-d0d9-46a0-b377-abb3de51d08e",
col_select = c("HSCP", "HSCPName", "HB", "HBName")
) %>%
clean_names()) %>%
# Filter and save
select(
gpprac = practice_code,
practice_name = gp_practice_name,
postcode,
cluster = gp_cluster,
partnership = hscp_name,
health_board = hb_name
) %>%
tidyr::drop_na(cluster) %>%
mutate(practice_name = stringr::str_to_title(practice_name)) %>%
distinct(gpprac, .keep_all = TRUE) %>%
# Sort for SPSS matching
arrange(gpprac)
#**************************************************************************************
# Create costs per cohort
#**************************************************************************************
cohort_calculations <- function(df){
#Comm_Living
df <- df %>%
mutate(comm_living_cost = case_when(
comm_living == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(comm_living_admission = case_when(
comm_living == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(comm_living_beddays = case_when(
comm_living == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(comm_living_unplanned_beddays = case_when(
comm_living == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(comm_living_ae2_attendance = case_when(
comm_living == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(comm_living_outpatient_attendance = case_when(
comm_living == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Adult Major
df <- df %>%
mutate(adult_major_cost = case_when(
adult_major == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(adult_major_admission = case_when(
adult_major == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(adult_major_beddays = case_when(
adult_major == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(adult_major_unplanned_beddays = case_when(
adult_major == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(adult_major_ae2_attendance = case_when(
adult_major == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(adult_major_outpatient_attendance = case_when(
adult_major == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Child Major
df <- df %>%
mutate(child_major_cost = case_when(
child_major == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(child_major_admission = case_when(
child_major == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(child_major_beddays = case_when(
child_major == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(child_major_unplanned_beddays = case_when(
child_major == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(child_major_ae2_attendance = case_when(
child_major == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(child_major_outpatient_attendance = case_when(
child_major == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Low CC
df <- df %>%
mutate(low_cc_cost = case_when(
low_cc == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(low_cc_admission = case_when(
low_cc == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(low_cc_beddays = case_when(
low_cc == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(low_cc_unplanned_beddays = case_when(
low_cc == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(low_cc_ae2_attendance = case_when(
low_cc == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(low_cc_outpatient_attendance = case_when(
low_cc == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Medium CC
df <- df %>%
mutate(medium_cc_cost = case_when(
medium_cc == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(medium_cc_admission = case_when(
medium_cc == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(medium_cc_beddays = case_when(
medium_cc == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(medium_cc_unplanned_beddays = case_when(
medium_cc == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(medium_cc_ae2_attendance = case_when(
medium_cc == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(medium_cc_outpatient_attendance = case_when(
medium_cc == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# High CC
df <- df %>%
mutate(high_cc_cost = case_when(
high_cc == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(high_cc_admission = case_when(
high_cc == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(high_cc_beddays = case_when(
high_cc == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(high_cc_unplanned_beddays = case_when(
high_cc == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(high_cc_ae2_attendance = case_when(
high_cc == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(high_cc_outpatient_attendance = case_when(
high_cc == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Substance
df <- df %>%
mutate(substance_cost = case_when(
substance == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(substance_admission = case_when(
substance == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(substance_beddays = case_when(
substance == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(substance_unplanned_beddays = case_when(
substance == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(substance_ae2_attendance = case_when(
substance == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(substance_outpatient_attendance = case_when(
substance == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Mental Health
df <- df %>%
mutate(mh_cost = case_when(
mh == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(mh_admission = case_when(
mh == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(mh_beddays = case_when(
mh == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(mh_unplanned_beddays = case_when(
mh == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(mh_ae2_attendance = case_when(
mh == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(mh_outpatient_attendance = case_when(
mh == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Maternity
df <- df %>%
mutate(maternity_cohort_cost = case_when(
maternity == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_admission = case_when(
maternity == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_beddays = case_when(
maternity == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_unplanned_beddays = case_when(
maternity == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_ae2_attendance = case_when(
maternity == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_outpatient_attendance = case_when(
maternity == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Frailty
df <- df %>%
mutate(frailty_cost = case_when(
frailty == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(frailty_admission = case_when(
frailty == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(frailty_beddays = case_when(
frailty == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(frailty_unplanned_beddays = case_when(
frailty == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(frailty_ae2_attendance = case_when(
frailty == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(frailty_outpatient_attendance = case_when(
frailty == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# End of Life
df <- df %>%
rename(end_of_life = end_of_l_ife)
df <- df %>%
mutate(end_of_life_cost = case_when(
end_of_life == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(end_of_life_admission = case_when(
end_of_life == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(end_of_life_beddays = case_when(
end_of_life == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(end_of_life_unplanned_beddays = case_when(
end_of_life == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(end_of_life_ae2_attendance = case_when(
end_of_life == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(end_of_life_outpatient_attendance = case_when(
end_of_life == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
}
### End of Script ###
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.