######################################################################
# Name of Script - 00_setup-environment.R
# Publication - Populations & Pathways Matrix
# Original Author - Gaby Carrillo based on the SPSS syntax
# Original Date - June 2022
#
# Note: Only the FY needs to be updated.
#
# Written/run on - R Studio Server
# Version of R - 3.6.1 (2019-07-05) -- "Action of the Toes"
#
# Description of content - Setup environment to run 01_create-data.R
#
# Running time: <1 minute
######################################################################
### 1 - Load packages ----
library(dplyr) # For data manipulation in the "tidy" way
library(janitor) # For 'cleaning' variable names
library(magrittr) # For %<>% operator
library(glue) # For working with strings
#########################################################################
### 2 - Define financial year in short and long format
# ***** THIS IS THE ONLY BIT THAT NEEDS TO BE UPDATED EVERY TIME THE SCRIPT IS RUN # *****
fy <- 2021
fy_long <- "2020/21"
#########################################################################
### 3 - Create functions
#########################################################################
### To read the Source Linkage Files
individual_slf <- function(){
tidyfst::import_fst(glue("/conf/hscdiip/01-Source-linkage-files/",
"source-individual-file-",
"20{fy}.fst")) %>%
select(-year,-dob,-postcode,-health_net_costincdnas,-health_net_costincincomplete,-hl1_in_fy,
-deceased,-death_date,-congen,-bloodbfo,-endomet,-digestive,-arth_date,-asthma_date,
-atrialfib_date,-cancer_date,-cvd_date,-liver_date,-copd_date,-dementia_date,-diabetes_date,
-epilepsy_date,-chd_date,-hefailure_date,-ms_date,-parkinsons_date,-refailure_date,
-congen_date,-bloodbfo_date,-endomet_date,-digestive_date,-hbrescode,-hscp2018,-ca2018,
-datazone2011,-hbpraccode,-simd2020v2_rank,-simd2020v2_sc_decile,-simd2020v2_sc_quintile,
-simd2020v2_hb2019_decile,-simd2020v2_hb2019_quintile,-simd2020v2_hscp2019_decile,-ur6_2016,
-ur3_2016,-ur2_2016,-hb2019,-hscp2019,-ca2019,-hri_lca,-hri_lca_incdn,-hri_hb,-hri_scot,
-hri_lcap_incdn,-hri_hbp,-hri_scotp,-sparra_start_fy,-sparra_end_fy,-hhg_start_fy) %>%
filter(lca != "") %>%
filter(keep_population == 1) %>%
#rename some variables
rename(c(
total_cost = health_net_cost,
ae2_cost = ae_cost,
ae2_attendances = ae_attendances,
prescribing_cost = pis_cost,
outpatient_attendances = op_newcons_attendances,
outpatient_cost = op_cost_attend,
maternity_beddays = mat_inpatient_beddays,
ch_admissions = ch_cis_episodes,
gp_cost = ooh_cost,
urban_rural = ur8_2016,
simd_quintile = simd2020v2_hscp2019_quintile,
hospital_emergency_attendance = cij_non_el,
hospital_elective_attendance = cij_el,
maternity_attendance = cij_mat)) %>%
clean_names()
}
### Create Partnership label based on lca number
partnership_label <- function(df) {
df <- df %>%
mutate(partnership = case_when(
lca == "01" ~ "Aberdeen City",
lca == "02" ~ "Aberdeenshire",
lca == "03" ~ "Angus",
lca == "04" ~ "Argyll & Bute",
lca == "05" ~ "Scottish Borders",
lca == "06" ~ "Clackmannanshire",
lca == "07" ~ "West Dunbartonshire",
lca == "08" ~ "Dumfries & Galloway",
lca == "09" ~ "Dundee City",
lca == "10" ~ "East Ayrshire",
lca == "11" ~ "East Dunbartonshire",
lca == "12" ~ "East Lothian",
lca == "13" ~ "East Renfrewshire",
lca == "14" ~ "City of Edinburgh",
lca == "15" ~ "Falkirk",
lca == "16" ~ "Fife",
lca == "17" ~ "Glasgow City",
lca == "18" ~ "Highland",
lca == "19" ~ "Inverclyde",
lca == "20" ~ "Midlothian",
lca == "21" ~ "Moray",
lca == "22" ~ "North Ayrshire",
lca == "23" ~ "North Lanarkshire",
lca == "24" ~ "Orkney Islands",
lca == "25" ~ "Perth & Kinross",
lca == "26" ~ "Renfrewshire",
lca == "27" ~ "Shetland Islands",
lca == "28" ~ "South Ayrshire",
lca == "29" ~ "South Lanarkshire",
lca == "30" ~ "Stirling",
lca == "31" ~ "West Lothian",
lca == "32" ~ "Na h-Eileanan Siar")
)
}
### Categorise patients.
categorise_patients <- function(df){
#hospital_elective_patients
df <- df %>%
mutate(hospital_elective_patients = case_when(
acute_daycase_episodes > 0 ~ 1,
acute_el_inpatient_episodes > 0 ~ 1,
mh_el_inpatient_episodes > 0 ~ 1,
gls_el_inpatient_episodes > 0 ~ 1,
TRUE ~ 0)
)
#hospital_emergency_patients
df <- df %>%
mutate(hospital_emergency_patients = case_when(
acute_non_el_inpatient_episodes > 0 ~ 1,
mh_non_el_inpatient_episodes > 0 ~ 1,
gls_non_el_inpatient_episodes > 0 ~ 1,
TRUE ~ 0)
)
#maternity_patients
df <- df %>%
mutate(maternity_patients = case_when(
mat_episodes > 0 ~ 1,
TRUE ~ 0)
)
#ae2_patients
df <- df %>%
mutate(ae2_patients = case_when(
ae2_attendances > 0 ~ 1,
TRUE ~ 0)
)
#outpatients
df <- df %>%
mutate(outpatients = case_when(
outpatient_attendances > 0 ~ 1,
TRUE ~ 0)
)
#prescribing_patients
df <- df %>%
mutate(prescribing_patients = case_when(
pis_dispensed_items > 0 ~ 1,
TRUE ~ 0)
)
#delayed_patients
df <- df %>%
mutate(delayed_patients = case_when(
dd_noncode9_episodes > 0 ~ 1,
dd_code9_episodes > 0 ~ 1,
TRUE ~ 0)
)
#dn_patients
df <- df %>%
mutate(dn_patients = case_when(
dn_contacts >= 1 ~ 1,
TRUE ~ 0)
)
#ch_patients
df <- df %>%
mutate(ch_patients = case_when(
ch_admissions >= 1 ~ 1,
TRUE ~ 0)
)
#gp_patients
df <- df %>%
mutate(gp_patients = case_when(
gp_contacts >= 1 ~ 1,
TRUE ~ 0)
)
}
### Create LTC flags
ltc_flags <- function(df){
df <- df %>%
mutate(zero_ltc = case_when(
ltc_total == 0 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(one_ltc = case_when(
ltc_total == 1 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(two_ltc = case_when(
ltc_total == 2 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(three_ltc = case_when(
ltc_total == 3 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(four_ltc = case_when(
ltc_total == 4 ~ 1,
TRUE ~ as.numeric(0)
))
df <- df %>%
mutate(five_ltc = case_when(
ltc_total == 5 ~ 1,
TRUE ~ as.numeric(0)
))
}
### Select variables for the patient aggregate file
patient_aggregate <- function(){
main %>%
select(anon_chi, arth, asthma, atrialfib, cancer, cvd, liver, copd, dementia, diabetes, epilepsy, chd,
hefailure, ms, parkinsons, refailure, end_of_l_ife, frailty, high_cc, maternity, mh, substance,
medium_cc, low_cc, child_major, adult_major, comm_living, partnership, total_cost, ae2_cost,
ae2_attendances, prescribing_cost, outpatient_attendances, outpatient_cost, maternity_beddays,
ch_admissions, gp_cost, total_beddays, unplanned_beddays, hospital_elective_cost,
hospital_emergency_cost, maternity_cost, hospital_elective_beddays, hospital_emergency_beddays,
delayed_episodes, delayed_beddays, gp_contacts, hospital_elective_patients,
hospital_emergency_patients, maternity_patients, ae2_patients, outpatients, prescribing_patients,
delayed_patients, dn_patients, ch_patients, gp_patients, ltc_total, zero_ltc, one_ltc, two_ltc,
three_ltc, four_ltc, five_ltc, resource_group, hhg_risk_group, age_band, total_admissions,
locality, service_use_cohort, demographic_cohort, simd_quintile, urban_rural, gender,
hospital_elective_attendance, hospital_emergency_attendance, maternity_attendance, ch_beddays,
ch_cost, dn_cost, dn_contacts, preventable_admissions, preventable_beddays) %>%
rename(end_of_life = end_of_l_ife)
}
#**************************************************************************************
# Create the calculations based on LTC
#**************************************************************************************
ltc_calculations <- function(df){
#Arthritis
df <- df %>%
mutate(arth_cost = case_when(
arth == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(arth_admission = case_when(
arth == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(arth_beddays = case_when(
arth == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(arth_unplanned_beddays = case_when(
arth == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(arth_ae2_attendance = case_when(
arth == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(arth_outpatient_attendance = case_when(
arth == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Asthma
df <- df %>%
mutate(asthma_cost = case_when(
asthma == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(asthma_admission = case_when(
asthma == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(asthma_beddays = case_when(
asthma == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(asthma_unplanned_beddays = case_when(
asthma == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(asthma_ae2_attendance = case_when(
asthma == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(asthma_outpatient_attendance = case_when(
asthma == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
#Atrial Fibrillation
df <- df %>%
mutate(atrialfib_cost = case_when(
atrialfib == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(atrialfib_admission = case_when(
atrialfib == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(atrialfib_beddays = case_when(
atrialfib == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(atrialfib_unplanned_beddays = case_when(
atrialfib == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(atrialfib_ae2_attendance = case_when(
atrialfib == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(atrialfib_outpatient_attendance = case_when(
atrialfib == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Cancer
df <- df %>%
mutate(cancer_cost = case_when(
cancer == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(cancer_admission = case_when(
cancer == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(cancer_beddays = case_when(
cancer == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(cancer_unplanned_beddays = case_when(
cancer == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(cancer_ae2_attendance = case_when(
cancer == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(cancer_outpatient_attendance = case_when(
cancer == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# CVD
df <- df %>%
mutate(cvd_cost = case_when(
cvd == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(cvd_admission = case_when(
cvd == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(cvd_beddays = case_when(
cvd == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(cvd_unplanned_beddays = case_when(
cvd == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(cvd_ae2_attendance = case_when(
cvd == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(cvd_outpatient_attendance = case_when(
cvd == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# liver
df <- df %>%
mutate(liver_cost = case_when(
liver == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(liver_admission = case_when(
liver == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(liver_beddays = case_when(
liver == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(liver_unplanned_beddays = case_when(
liver == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(liver_ae2_attendance = case_when(
liver == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(liver_outpatient_attendance = case_when(
liver == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# COPD
df <- df %>%
mutate(copd_cost = case_when(
copd == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(copd_admission = case_when(
copd == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(copd_beddays = case_when(
copd == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(copd_unplanned_beddays = case_when(
copd == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(copd_ae2_attendance = case_when(
copd == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(copd_outpatient_attendance = case_when(
copd == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Dementia
df <- df %>%
mutate(dementia_cost = case_when(
dementia == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(dementia_admission = case_when(
dementia == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(dementia_beddays = case_when(
dementia == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(dementia_unplanned_beddays = case_when(
dementia == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(dementia_ae2_attendance = case_when(
dementia == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(dementia_outpatient_attendance = case_when(
dementia == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Diabetes
df <- df %>%
mutate(diabetes_cost = case_when(
diabetes == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(diabetes_admission = case_when(
diabetes == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(diabetes_beddays = case_when(
diabetes == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(diabetes_unplanned_beddays = case_when(
diabetes == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(diabetes_ae2_attendance = case_when(
diabetes == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(diabetes_outpatient_attendance = case_when(
diabetes == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Epilepsy
df <- df %>%
mutate(epilepsy_cost = case_when(
epilepsy == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(epilepsy_admission = case_when(
epilepsy == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(epilepsy_beddays = case_when(
epilepsy == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(epilepsy_unplanned_beddays = case_when(
epilepsy == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(epilepsy_ae2_attendance = case_when(
epilepsy == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(epilepsy_outpatient_attendance = case_when(
epilepsy == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Chronic Heart Disease
df <- df %>%
mutate(chd_cost = case_when(
chd == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(chd_admission = case_when(
chd == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(chd_beddays = case_when(
chd == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(chd_unplanned_beddays = case_when(
chd == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(chd_ae2_attendance = case_when(
chd == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(chd_outpatient_attendance = case_when(
chd == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Heart Failure
df <- df %>%
mutate(hefailure_cost = case_when(
hefailure == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(hefailure_admission = case_when(
hefailure == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(hefailure_beddays = case_when(
hefailure == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(hefailure_unplanned_beddays = case_when(
hefailure == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(hefailure_ae2_attendance = case_when(
hefailure == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(hefailure_outpatient_attendance = case_when(
hefailure == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Multiple Sclerosis
df <- df %>%
mutate(ms_cost = case_when(
ms == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(ms_admission = case_when(
ms == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(ms_beddays = case_when(
ms == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(ms_unplanned_beddays = case_when(
ms == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(ms_ae2_attendance = case_when(
ms == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(ms_outpatient_attendance = case_when(
ms == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Parkinson
df <- df %>%
mutate(parkinsons_cost = case_when(
parkinsons == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(parkinsons_admission = case_when(
parkinsons == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(parkinsons_beddays = case_when(
parkinsons == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(parkinsons_unplanned_beddays = case_when(
parkinsons == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(parkinsons_ae2_attendance = case_when(
parkinsons == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(parkinsons_outpatient_attendance = case_when(
parkinsons == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Renal Failure
df <- df %>%
mutate(refailure_cost = case_when(
refailure == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(refailure_admission = case_when(
refailure == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(refailure_beddays = case_when(
refailure == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(refailure_unplanned_beddays = case_when(
refailure == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(refailure_ae2_attendance = case_when(
refailure == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(refailure_outpatient_attendance = case_when(
refailure == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
}
#**************************************************************************************
# Create costs per cohort
#**************************************************************************************
cohort_calculations <- function(df){
#Comm_Living
df <- df %>%
mutate(comm_living_cost = case_when(
comm_living == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(comm_living_admission = case_when(
comm_living == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(comm_living_beddays = case_when(
comm_living == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(comm_living_unplanned_beddays = case_when(
comm_living == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(comm_living_ae2_attendance = case_when(
comm_living == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(comm_living_outpatient_attendance = case_when(
comm_living == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Adult Major
df <- df %>%
mutate(adult_major_cost = case_when(
adult_major == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(adult_major_admission = case_when(
adult_major == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(adult_major_beddays = case_when(
adult_major == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(adult_major_unplanned_beddays = case_when(
adult_major == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(adult_major_ae2_attendance = case_when(
adult_major == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(adult_major_outpatient_attendance = case_when(
adult_major == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Child Major
df <- df %>%
mutate(child_major_cost = case_when(
child_major == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(child_major_admission = case_when(
child_major == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(child_major_beddays = case_when(
child_major == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(child_major_unplanned_beddays = case_when(
child_major == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(child_major_ae2_attendance = case_when(
child_major == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(child_major_outpatient_attendance = case_when(
child_major == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Low CC
df <- df %>%
mutate(low_cc_cost = case_when(
low_cc == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(low_cc_admission = case_when(
low_cc == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(low_cc_beddays = case_when(
low_cc == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(low_cc_unplanned_beddays = case_when(
low_cc == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(low_cc_ae2_attendance = case_when(
low_cc == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(low_cc_outpatient_attendance = case_when(
low_cc == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Medium CC
df <- df %>%
mutate(medium_cc_cost = case_when(
medium_cc == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(medium_cc_admission = case_when(
medium_cc == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(medium_cc_beddays = case_when(
medium_cc == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(medium_cc_unplanned_beddays = case_when(
medium_cc == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(medium_cc_ae2_attendance = case_when(
medium_cc == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(medium_cc_outpatient_attendance = case_when(
medium_cc == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# High CC
df <- df %>%
mutate(high_cc_cost = case_when(
high_cc == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(high_cc_admission = case_when(
high_cc == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(high_cc_beddays = case_when(
high_cc == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(high_cc_unplanned_beddays = case_when(
high_cc == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(high_cc_ae2_attendance = case_when(
high_cc == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(high_cc_outpatient_attendance = case_when(
high_cc == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Substance
df <- df %>%
mutate(substance_cost = case_when(
substance == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(substance_admission = case_when(
substance == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(substance_beddays = case_when(
substance == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(substance_unplanned_beddays = case_when(
substance == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(substance_ae2_attendance = case_when(
substance == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(substance_outpatient_attendance = case_when(
substance == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Mental Health
df <- df %>%
mutate(mh_cost = case_when(
mh == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(mh_admission = case_when(
mh == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(mh_beddays = case_when(
mh == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(mh_unplanned_beddays = case_when(
mh == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(mh_ae2_attendance = case_when(
mh == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(mh_outpatient_attendance = case_when(
mh == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Maternity
df <- df %>%
mutate(maternity_cohort_cost = case_when(
maternity == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_admission = case_when(
maternity == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_beddays = case_when(
maternity == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_unplanned_beddays = case_when(
maternity == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_ae2_attendance = case_when(
maternity == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(maternity_cohort_outpatient_attendance = case_when(
maternity == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# Frailty
df <- df %>%
mutate(frailty_cost = case_when(
frailty == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(frailty_admission = case_when(
frailty == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(frailty_beddays = case_when(
frailty == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(frailty_unplanned_beddays = case_when(
frailty == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(frailty_ae2_attendance = case_when(
frailty == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(frailty_outpatient_attendance = case_when(
frailty == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
# End of Life
df <- df %>%
mutate(end_of_life_cost = case_when(
end_of_life == 1 ~ total_cost,
TRUE ~ 0 )) %>%
mutate(end_of_life_admission = case_when(
end_of_life == 1 ~ total_admissions,
TRUE ~ 0 )) %>%
mutate(end_of_life_beddays = case_when(
end_of_life == 1 ~ total_beddays,
TRUE ~ 0 )) %>%
mutate(end_of_life_unplanned_beddays = case_when(
end_of_life == 1 ~ unplanned_beddays,
TRUE ~ 0 )) %>%
mutate(end_of_life_ae2_attendance = case_when(
end_of_life == 1 ~ ae2_attendances,
TRUE ~ 0 )) %>%
mutate(end_of_life_outpatient_attendance = case_when(
end_of_life == 1 ~ outpatient_attendances,
TRUE ~ 0 ))
}
### End of Script ###
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.