extendtree | R Documentation |
This functions returns the list consit of hclust object and dendrogram object. dendrogram is coloured by factor
extendtree(dat, extend, distm, clm, lab, gp, vcol, cexlab, blwd, ...)
dat |
data frame or matrix |
extend |
use with dendextend or not |
distm |
distance measure one of the amap::Dist methods "euclidean", "maximum", "manhattan", "canberra", "binary", "pearson", "abspearson", "correlation", "abscorrelation", "spearman" or "kendall". The default is "spearman". |
clm |
one of the hclust methods "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty"(= WPGMA), "median"(= WPGMC) or "centroid"(= UPGMC). The default is "ward.D2" . |
lab |
Leaf labels |
gp |
Group of labels as factor |
vcol |
A vector of colours corresponding to group of leaves |
cexlab |
cex of leaf label. The default is 0.8 |
blwd |
line width of edges. The default is 1 |
... |
arbitary option, if not using dendextend. E.g. nodePar = list(pch = NA, lab.cex = 0.8), edgePar = list(lwd = 2), leaflab ="none" |
Character vector, length of n
## Not run: # minimum usage res1 <- rsko::extendtree(dat = mtcars, extend = FALSE, lab = rownames(mtcars)) res1[[1]] plot(res1[[2]]) # using dist object from other distance measure cos.mat <- rsko::siml_mat(dat = t(iris[,1:4]), method = "cosine", type = "distance") dist.cos <- as.dist(cos.mat) res2 <- rsko::extendtree(dat = iris[,1:4], extend = TRUE, distm = dist.cos, clm = "average", lab = as.character(iris$Species), gp = iris$Species, vcol = 1:3, cexlab = 0.5, blwd = 1) plot(res2[[2]]) # using dendextend with several 'set' options res3 <- rsko::extendtree(dat = iris[,1:4], extend = TRUE, distm = "euclidean", clm = "average", lab = as.character(iris$Species), gp = iris$Species, vcol = 1:3, cexlab = 0.5, blwd = 1.5) plot(res3[[2]]) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.