| myheat | R Documentation | 
hierarchical clustering using amap::Dsit, and draw heatmap using by gplots::heatmap.2. Usinga a categorical data, consists from integer vectors.
myheat(d, squared, categorical, draw, cden, rden, c.distm, c.clm, r.distm, r.clm, scale, color, ...)
| d | data.frame or matrix | 
| squared | logical: squared matrix like a correlation matrix is TRUE. The default value is FALSE | 
| categorical | logical: categorical data or not. | 
| draw | "both","row","column", or "none" | 
| cden | dendrogram object like a result of rsko::extendtree | 
| rden | dendrogram object like a result of rsko::extendtree | 
| c.distm | A distance measure for column side dendrogram. The default value is "spearman". If categorical was TRUE, the default value is "jaccard", and select from these "jaccard", "simpson", "dice" , and "smc". | 
| c.clm | A clustering method for column side dendrogram. | 
| r.distm | A distance measure for row side dendrogram. | 
| r.clm | A clustering method for row side dendrogram. | 
| scale | character "row", "column", "none" | 
| color | character select from "bluered", "greenred", "heat.colors", "BuRd". If categorical was TRUE, colour vectors which lengh same as levels of 'd'. | 
| ... | additional optioins for gplots::heatmap.2. E.g. cexRow = 0.8, cexCol = 0.8, labRow = FALSE = F, labCol = F | 
## Not run: 
# clustering and draw heatmap
dat = iris[-5]
myheat(d = dat, scale = "column", cexCol = 1)
myheat(d = dat, draw = "both", scale = "column", color = "BuRd", labRow = FALSE, labCol = FALSE)
myheat(d = dat, draw = "both", scale = "column", color = "bluered", cexRow = 0.8, cexCol = 0.8)
# give dendrogram object
rden <- rsko::extendtree(dat = dat, extend = TRUE,
                         distm = "euclidean", clm = "average",
                         lab = as.character(iris[[5]]),
                         gp = iris[,5], vcol = 1:3)
cden <- rsko::extendtree(dat = t(dat), extend = FALSE,
                         distm = "correlation", clm = "average")
myheat(d = t(dat), categorical = FALSE, squared = FALSE, draw = "both",
       cden = rden[[2]], rden = cden[[2]],  scale = "row", cexRow = 0.8)
# squared matrix
cormat <- as.data.frame(cor(t(dat)))
myheat(cormat, squared = TRUE, draw = "both", scale = "none",
c.distm = "correlation", r.distm = "correlation", c.clm = "average", r.clm = "average",
color = "heat.colors")
# categorical data, which converted from character to integer
scale_col <- function(x) as.vector(scale(x, center = min(x), scale = max(x)-min(x)))
fct_col <- function(x) {
   cut(x, breaks = seq(0, 1, 0.25), labels = letters[1:4], include.lowest = TRUE)
   }
dat <- as.data.frame(do.call(cbind, lapply(iris[-5], function(x) { fct_col(scale_col(x))})))
col <- RColorBrewer::brewer.pal(4, "Dark2")
myheat(d=dat, categorical=TRUE, c.distm="smc", r.distm="smc", color=col, cexCol=0.8)
# categorical data
data("listeria", package = "qtl")
dat <- listeria$geno[[1]][[1]]
col <- c("steelblue", "darkseagreen1","violetred2")
rsko::myheat(d=dat, categorical = T, color = col, c.distm="jaccard", r.distm="smc")
legend("topleft", legend = c(levels(factor(dat)),"null"), col = c(col,NA), pch = 15, cex = 0.8)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.