data-raw/extension-learning.R

# Depends: R (>= 2.10)


## From here: https://rud.is/books/creating-ggplot2-extensions/demystifying-ggplot2.html
## --------------------------------------------------------------------------------------
n.sample <- 1e6
df <- data.frame(P = runif(n.sample), GWAS = sample(c("a", "b"),
  n.sample,
  replace = TRUE
))
gg <- ggplot(data = df) + stat_gwas_qq(aes(observed = P)) #+

gg <- ggplot(data = df) + stat_gwas_qq_hex(aes(y = P), fill = "black", bins = 20) # 418x13 table in gb$data


# gg <-ggplot(data = GWAS.utils::giant) + stat_gwas_qq_hex(aes(y = P), colour = "red" ) #418x13 table in gb$data
gg <- ggplot(data = GWAS.utils::giant) + stat_gwas_qq_hex(aes(y = P), fill = "black", bins = 20) # 418x13 table in gb$data

library(pryr)
object_size(gg)

gg <- ggplot(data = GWAS.utils::giant) + stat_gwas_qq_hex(aes(y = P), fill = "black", bins = 30) # 418x13 table in gb$data
#  facet_wrap( ~ CHR, label = label_both) ## leads to a 2'886x13 table
#  geom_abline(intercept = 0, slope = 1)

# ggplot(data = mtcars, aes(displ, hwy, colour = class)) +
#  geom_point() -> gg

# str(gg)
gb <- ggplot_build(gg)
# str(gb)

gt <- ggplot_gtable(gb)
# str(gt)

## compare data
tibble::as_tibble(gb$plot$data) ## original data
tibble::as_tibble(gb$data[[1]]) ## plotting data


library(grid)

grid.newpage()
grid.draw(gt)
sinarueeger/ggGWAS documentation built on Aug. 2, 2019, 4:03 p.m.