test_that("multiplication works", {
data("abies")
# Using k-fold partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
glm_t1 <- fit_glm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen"),
poly = 0,
inter_order = 0
)
expect_equal(class(glm_t1), "list")
# testing with polynomial and interaction term
glm_t2 <- fit_glm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "depth"),
predictors_f = c("landform"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen"),
poly = 2,
inter_order = 1
)
expect_equal(class(glm_t2), "list")
# Using repeated k-fold partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "rep_kfold", folds = 3, replicates = 3)
)
glm_t3 <- fit_glm(
data = abies2,
response = "pr_ab",
predictors = c("ppt_jja", "pH"),
predictors_f = c("landform"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen"),
poly = 3,
inter_order = 2
)
expect_equal(class(glm_t3), "list")
# Does the function work without predictors_f?
glm_t3 <- fit_glm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
)
expect_equal(class(glm_t3), "list")
# What about no predictors? Does not work
expect_error(fit_glm(
data = abies2,
response = "pr_ab",
predictors_f = c("landform"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
))
})
test_that("test glm with NA, no factor variable and using formula", {
data("abies")
# Using k-fold partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
abies2$aet[2:10] <- NA
glm_t1 <- fit_glm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
predictors_f = NULL,
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen"),
fit_formula = as.formula("pr_ab ~ aet + ppt_jja + pH + awc + depth")
)
expect_equal(class(glm_t1), "list")
})
test_that("test select_var argument", {
data("abies")
# Using k-fold partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
glm_t1 <- fit_glm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
predictors_f = c("landform"),
select_pred = TRUE,
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen"),
poly = 2,
inter_order = 1
)
expect_equal(class(glm_t1), "list")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.