test_that("test different function setting ", {
data("abies")
# Using k-fold partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
# generating background data
bg <- abies2
bg$pr_ab <- 0
max_t1 <- fit_max(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
background = bg,
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
)
expect_equal(class(max_t1), "list")
expect_length(max_t1, 4)
# Using bootstrap partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "boot", replicates = 5, proportion = 0.7)
)
# generating background data
bg <- abies2
bg$pr_ab <- 0
max_t2 <- fit_max(
data = abies2,
response = "pr_ab",
predictors = c("ppt_jja", "pH", "awc"),
predictors_f = c("landform"),
partition = ".part",
background = bg,
thr = c(type = c("lpt", "max_sens_spec", "sensitivity"), sens = "0.8")
)
expect_equal(class(max_t2), "list")
expect_length(max_t1, 4)
# Does the function work without predictors_f?
max_t3 <- fit_max(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
)
expect_equal(class(max_t3), "list")
# What about no predictors? Does not work
expect_error(fit_max(
data = abies2,
response = "pr_ab",
predictors_f = c("landform"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
))
})
test_that("fit model only with presences and background points", {
data("abies")
# Only presences
abies2 <- abies %>% dplyr::filter(pr_ab == 1)
# Using k-fold partition method
abies2 <- part_random(
data = abies2,
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
# generating background data
bg <- abies2
bg$pr_ab <- 0
max_t1 <- fit_max(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "pH", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
background = bg,
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
)
expect_equal(class(max_t1), "list")
expect_length(max_t1, 4)
# What about no predictors? Does not work
expect_error(fit_max(
data = abies2,
response = "pr_ab",
predictors_f = c("landform"),
partition = ".part",
thr = c("max_sens_spec", "equal_sens_spec", "max_sorensen")
))
})
test_that("test max with NA, no factor variable and using formula", {
data("abies")
# Using k-fold partition method
# Using bootstrap partition method
abies2 <- part_random(
data = abies,
pr_ab = "pr_ab",
method = c(method = "boot", replicates = 5, proportion = 0.7)
)
# generating background data
bg <- abies2
bg$pr_ab <- 0
abies2$aet[2:10] <- NA
max_t1 <- fit_max(
data = abies2,
response = "pr_ab",
predictors = c("ppt_jja", "pH", "awc"),
predictors_f = c("landform"),
partition = ".part",
background = bg,
thr = c(type = c("lpt", "max_sens_spec", "sensitivity"), sens = "0.8")
)
expect_equal(class(max_t1), "list")
expect_length(max_t1, 4)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.