## %######################################################%##
# #
#### Set of tests for testing errors ####
# #
## %######################################################%##
test_that("class and lenght of svm_t object", {
data(abies)
abies
# We will partition the data with the k-fold method
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
# Hyper-parameter values for tuning
tune_grid <-
expand.grid(
C = c(2, 8, 20),
sigma = c(0.01, 0.2, 0.5)
)
svm_t <-
tune_svm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "cwd", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
grid = tune_grid,
thr = "max_sens_spec",
metric = "TSS"
)
expect_equal(class(svm_t), "list")
expect_equal(length(svm_t), 5)
})
test_that("test of 0-1 response argument", {
data(abies)
# We will partition the data with the k-fold method
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
# Hyper-parameter values for tuning
tune_grid <-
expand.grid(
C = c(2, 8, 20),
sigma = c(0.01, 0.2, 0.5)
)
expect_error(
svm_t <-
tune_svm(
data = abies2,
response = "aet",
predictors = c("aet", "cwd", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
grid = tune_grid,
thr = "max_sens_spec",
metric = "TSS"
)
)
})
test_that("test NULL in predictors_f", {
data(abies)
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
tune_grid <-
expand.grid(
C = c(2, 8, 20),
sigma = c(0.01, 0.2, 0.5)
)
svm_t <-
tune_svm(
data = abies2,
response = "pr_ab",
predictors = c(
"aet",
"cwd",
"tmin",
"ppt_djf",
"ppt_jja",
"ppt_jja",
"pH",
"awc",
"depth"
),
predictors_f = NULL,
partition = ".part",
grid = tune_grid,
thr = "max_sens_spec",
metric = "TSS"
)
expect_equal(class(svm_t), "list")
expect_equal(length(svm_t), 5)
})
test_that("test if remove NAs rows works", {
data(abies)
# We will partition the data with the k-fold method
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
# Hyper-parameter values for tuning
tune_grid <-
expand.grid(
C = c(2, 8, 20),
sigma = c(0.01, 0.2, 0.5)
)
# Insert NAs in rows 3 and 4 for response column.
abies2[3:4, 1] <- NA
expect_message(
svm_t <-
tune_svm(
data = abies2,
response = "pr_ab",
predictors = c(
"aet",
"cwd",
"tmin",
"ppt_djf",
"ppt_jja",
"ppt_jja",
"pH",
"awc",
"depth"
),
predictors_f = c("landform"),
partition = ".part",
grid = tune_grid,
thr = "max_sens_spec",
metric = "TSS"
)
)
# Compare if the 2 NAs were removed
testthat:::compare.numeric(nrow(abies2), nrow(svm_t$data_ens))
})
test_that("test fit_formula", {
data(abies)
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
# Hyper-parameter values for tuning
tune_grid <-
expand.grid(
C = c(2, 8, 20),
sigma = c(0.01, 0.2, 0.5)
)
expect_message(
svm_t <-
tune_svm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "ppt_jja", "depth"),
predictors_f = c("landform"),
fit_formula = formula("pr_ab ~ aet + ppt_jja + depth + landform"),
partition = ".part",
grid = tune_grid,
thr = "max_sens_spec",
metric = "TSS"
)
)
})
test_that("grid = NULL ", {
data(abies)
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
expect_message(
svm_t <-
tune_svm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
grid = NULL,
thr = "max_sens_spec",
metric = "TSS"
)
)
})
test_that("missuse of grid ", {
data(abies)
abies2 <- part_random(
data = abies %>% dplyr::group_by(pr_ab) %>%
dplyr::slice_sample(prop = .2),
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 2)
)
# Hyper-parameter values for tuning
tune_grid <-
expand.grid(
n.trees = c(20, 50),
# sigma = c(0.1, 0.5),
n.minobsinnode = c(1, 3)
)
expect_error(
svm_t <-
tune_svm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "awc", "depth"),
predictors_f = c("landform"),
partition = ".part",
grid = grid,
thr = "max_sens_spec",
metric = "TSS"
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.