tests/testthat/test-tune_svm.R

## %######################################################%##
#                                                          #
####          Set of tests for testing errors           ####
#                                                          #
## %######################################################%##
test_that("class and lenght of svm_t object", {
  data(abies)
  abies

  # We will partition the data with the k-fold method

  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  # Hyper-parameter values for tuning
  tune_grid <-
    expand.grid(
      C = c(2, 8, 20),
      sigma = c(0.01, 0.2, 0.5)
    )

  svm_t <-
    tune_svm(
      data = abies2,
      response = "pr_ab",
      predictors = c("aet", "cwd", "awc", "depth"),
      predictors_f = c("landform"),
      partition = ".part",
      grid = tune_grid,
      thr = "max_sens_spec",
      metric = "TSS"
    )

  expect_equal(class(svm_t), "list")
  expect_equal(length(svm_t), 5)
})

test_that("test of 0-1 response argument", {
  data(abies)

  # We will partition the data with the k-fold method
  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  # Hyper-parameter values for tuning
  tune_grid <-
    expand.grid(
      C = c(2, 8, 20),
      sigma = c(0.01, 0.2, 0.5)
    )

  expect_error(
    svm_t <-
      tune_svm(
        data = abies2,
        response = "aet",
        predictors = c("aet", "cwd", "awc", "depth"),
        predictors_f = c("landform"),
        partition = ".part",
        grid = tune_grid,
        thr = "max_sens_spec",
        metric = "TSS"
      )
  )
})


test_that("test NULL in predictors_f", {
  data(abies)

  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  tune_grid <-
    expand.grid(
      C = c(2, 8, 20),
      sigma = c(0.01, 0.2, 0.5)
    )

  svm_t <-
    tune_svm(
      data = abies2,
      response = "pr_ab",
      predictors = c(
        "aet",
        "cwd",
        "tmin",
        "ppt_djf",
        "ppt_jja",
        "ppt_jja",
        "pH",
        "awc",
        "depth"
      ),
      predictors_f = NULL,
      partition = ".part",
      grid = tune_grid,
      thr = "max_sens_spec",
      metric = "TSS"
    )

  expect_equal(class(svm_t), "list")
  expect_equal(length(svm_t), 5)
})

test_that("test if remove NAs rows works", {
  data(abies)

  # We will partition the data with the k-fold method
  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  # Hyper-parameter values for tuning
  tune_grid <-
    expand.grid(
      C = c(2, 8, 20),
      sigma = c(0.01, 0.2, 0.5)
    )

  # Insert NAs in rows 3 and 4 for response column.
  abies2[3:4, 1] <- NA

  expect_message(
    svm_t <-
      tune_svm(
        data = abies2,
        response = "pr_ab",
        predictors = c(
          "aet",
          "cwd",
          "tmin",
          "ppt_djf",
          "ppt_jja",
          "ppt_jja",
          "pH",
          "awc",
          "depth"
        ),
        predictors_f = c("landform"),
        partition = ".part",
        grid = tune_grid,
        thr = "max_sens_spec",
        metric = "TSS"
      )
  )

  # Compare if the 2 NAs were removed
  testthat:::compare.numeric(nrow(abies2), nrow(svm_t$data_ens))
})

test_that("test fit_formula", {
  data(abies)

  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  # Hyper-parameter values for tuning
  tune_grid <-
    expand.grid(
      C = c(2, 8, 20),
      sigma = c(0.01, 0.2, 0.5)
    )

  expect_message(
    svm_t <-
      tune_svm(
        data = abies2,
        response = "pr_ab",
        predictors = c("aet", "ppt_jja", "depth"),
        predictors_f = c("landform"),
        fit_formula = formula("pr_ab ~ aet + ppt_jja + depth + landform"),
        partition = ".part",
        grid = tune_grid,
        thr = "max_sens_spec",
        metric = "TSS"
      )
  )
})

test_that("grid = NULL ", {
  data(abies)

  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  expect_message(
    svm_t <-
      tune_svm(
        data = abies2,
        response = "pr_ab",
        predictors = c("aet", "awc", "depth"),
        predictors_f = c("landform"),
        partition = ".part",
        grid = NULL,
        thr = "max_sens_spec",
        metric = "TSS"
      )
  )
})


test_that("missuse of grid ", {
  data(abies)

  abies2 <- part_random(
    data = abies %>% dplyr::group_by(pr_ab) %>%
      dplyr::slice_sample(prop = .2),
    pr_ab = "pr_ab",
    method = c(method = "kfold", folds = 2)
  )

  # Hyper-parameter values for tuning
  tune_grid <-
    expand.grid(
      n.trees = c(20, 50),
      # sigma = c(0.1, 0.5),
      n.minobsinnode = c(1, 3)
    )

  expect_error(
    svm_t <-
      tune_svm(
        data = abies2,
        response = "pr_ab",
        predictors = c("aet", "awc", "depth"),
        predictors_f = c("landform"),
        partition = ".part",
        grid = grid,
        thr = "max_sens_spec",
        metric = "TSS"
      )
  )
})
sjevelazco/flexsdm documentation built on Feb. 28, 2025, 9:07 a.m.