test_that("Brier", {
# case 1 Surv object
library(survival)
time <- c(1, 1, 2, 2, 2, 2, 2, 2)
status <- c(0, 1, 1, 0, 1, 1, 0, 1)
pre_sp <- c(0.3, 0.2, 0.4, 0.5, 0.9, 0.1, 0.2, 0.7)
expect_type(Brier(Surv(time, status), pre_sp), "double")
expect_equal(as.numeric(Brier(Surv(time, status), pre_sp)), 0.468571)
expect_error(
Brier(Surv(time[-1], status), pre_sp),
"Time and status are different lengths"
)
expect_error(
Brier(Surv(time, status), pre_sp, NA),
"Cannot calculate Brier Score at NA"
)
expect_error(
Brier(Surv(time, status), NA),
"The input probability vector cannot have NA"
)
expect_error(
Brier(Surv(time, status), pre_sp[-1]),
"The prediction survival probability and the survival object have different lengths"
)
time[1] <- NA
expect_error(
Brier(Surv(time, status), pre_sp),
"The input vector cannot have NA"
)
# case2 fit object
library(randomForestSRC)
library(pec)
set.seed(1234)
mydata <- kidney[, -1]
train_index <- sample(1:nrow(mydata), 0.7 * nrow(mydata))
train_data <- mydata[train_index, ]
test_data <- mydata[-train_index, ]
# test coxph
coxfit <- coxph(Surv(time, status) ~ ., data = train_data, x = TRUE)
expect_type(Brier(coxfit, test_data), "double")
# test RSF
rsffit <- rfsrc(Surv(time, status) ~ ., data = train_data)
expect_type(Brier(rsffit, test_data), "double")
# test survreg
for (dist in c(
"weibull", "exponential", "gaussian",
"logistic", "lognormal", "loglogistic"
)) {
survregfit <- survreg(Surv(time, status) ~ .,
dist = dist, data = train_data
)
expect_type(Brier(survregfit, test_data), "double")
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.