### Perform H0: alpha = 1 & beta = 1 v.s. Ha: alpha < 1 & beta > 1.
lrt <- function(PV.gbd, CLASS.gbd, K, H0.alpha = .FC.CT$LRT$H0.alpha,
H0.beta = .FC.CT$LRT$H0.beta){
if((H0.alpha <= 0) || (H0.alpha > H0.beta)){
stop("It should be 0 < H0.alpha <= H0.beta.")
}
K.CLASS <- as.integer(max.gbd(CLASS.gbd))
if(K.CLASS > K){
stop("CLASS.gbd and K are not matched.")
}
### For constrOptim().
fn <- function(theta, x.gbd){
-sum_gbd(dbeta(x.gbd, theta[1], theta[2], log = TRUE))
}
ui <- rbind(c(1, 0), c(-1, 0), c(0, 1))
ci <- c(0, -H0.alpha, H0.beta)
ret <- NULL
for(i.k in 1:K){
N.class.gbd <- sum_gbd(CLASS.gbd == i.k)
if(N.class.gbd > 0){ # in case of empty cluster.
tmp.gbd <- PV.gbd[CLASS.gbd == i.k]
### logL under H0.
logL.0 <- sum_gbd(dbeta(tmp.gbd, H0.alpha, H0.beta, log = TRUE))
### logL under Ha.
tmp <- constrOptim(c(H0.alpha - 0.01, H0.beta + 0.01), fn, NULL, ui, ci,
method = "Nelder-Mead", x.gbd = tmp.gbd)
Ha.alpha <- tmp$par[1]
Ha.beta <- tmp$par[2]
logL.a <- -tmp$value
### LRT.
lrt <- -2 * (logL.0 - logL.a)
if(lrt < 0){
lrt <- 0
}
### p-value.
p.value <- pchisq(lrt, 2, lower.tail = FALSE)
ret <- rbind(ret, c(i.k, Ha.alpha, Ha.beta,
logL.0, logL.a, lrt, p.value))
} else{
ret <- rbind(ret, c(i.k, rep(NA, 6)))
}
}
ret <- cbind(ret, qvalue(ret[, ncol(ret)]))
colnames(ret) <- c("i.k", "mle.alpha", "mle.beta",
"logL.0", "logL.a", "lrt", "p.value", "q.value")
ret
} # End of lrt().
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.