test_that("Default Bayesian hierarchical model can be build", {
# Test all model combinations:
dat <- get_mock_data() %>%
filter(panel == "p1")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, dont_bind = TRUE,
max_iter = 50000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = get_mock_data(),
id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
id_panel = "panel",
inits_type = "overdispersed",
names_variables_to_sample =
c("tau_proposal", "tau_assessor", "sigma",
"rank_theta", "tau_panel"),
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, dont_bind = TRUE,
max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
inits_type = "overdispersed",
heterogeneous_residuals = TRUE,
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
heterogeneous_residuals = TRUE,
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
inits_type = "overdispersed",
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
point_scale = 6,
ordinal_scale = TRUE,
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
inits_type = "overdispersed",
point_scale = 6,
ordinal_scale = TRUE,
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
test <- get_mcmc_samples(data = dat, id_proposal = "proposal",
id_assessor = "assessor",
grade_variable = "num_grade",
inits_type = "overdispersed",
heterogeneous_residuals = TRUE,
point_scale = 6,
ordinal_scale = TRUE,
n_chains = 4, n_adapt = 10000, n_iter = 10000,
n_burnin = 10000, max_iter = 10000)
expect_equal(class(test$samples), "mcmc")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.