#' Comparison forest plot of ma and nma
#'
#' @param dat Nma and pw data
#'
#' @return
#' @export
#'
#' @examples
pw_nma_forest <- function(dat) {
dat %>%
# order plot by mean
mutate(
intervention = fct_reorder(intervention,
mean,
# this is the key thing to flip
# for direction lower
.desc = FALSE
)
) %>%
ggplot() +
geom_segment(
aes(x = ci_lb, xend = ci_ub,
y = intervention,
yend = intervention,
#linetype = mod,
color = mod,
size = mod,
alpha = mod
)
) +
scale_color_discrete(type = c("#2a405c", "#474a40")) +
#scale_linetype_discrete(c(1,3)) +
scale_size_discrete(range = c(5,1)) +
scale_alpha_discrete(range = c(0.6, 0.2)) +
theme_minimal(
base_family = "serif"
) +
# facet_grid(
# intervention ~ .,
# scales = "free_y",
# switch = "y"
# ) +
# scale_y_discrete(position = "right") +
theme(
axis.title.y = element_blank(),
strip.text.y.left = element_text(angle = 0),
panel.grid.minor.x = element_blank(),
panel.grid.major.x = element_blank()
) +
labs(
x = "Mean difference from placebo",
# title = this_title,
subtitle = "Network meta-analysis vs meta-analysis results",
color = "Model type",
linetype = "Model type",
caption =
glue("Network meta-analysis (NMA): point estimate [95% credible interval].
Random-effects meta-analysis (RMA): point estimate [95% confidence interval] I-squared (tau-squared).") %>%
str_wrap(60)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.