# rm(list = ls())
library(ESS)
library(foreach)
library(tidyverse)
select <- dplyr::select
# Even distribution of RP_i ----------------------------------
true_data <- genSimData(
item_loc_range = c(100, 500),
loc_by = 1,
nitem = 100,
nlevel = 3,
correlation = 0.5,
type_seq = "same")
c(level2=head(which(true_data$Operational_Lv == "Level2"),1),level3=
head(which(true_data$Operational_Lv == "Level3"),1))
test_data_WESS <- simEstCutScore(true_data, WESS = T)
test_data_WESS$selected_CP
mkPlot(test_data_WESS$res, WESS = T);
estCor(test_data_WESS$res)
psych::cohen.kappa(data.frame(test_data_WESS$res$Operational_Lv, test_data_WESS$res$ALD))
table(OPL=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
test_data_CESS <- simEstCutScore(true_data, WESS = F)
test_data_CESS$selected_CP
mkPlot(.data = test_data_CESS$res, WESS = F);
estCor(test_data_CESS$res)
psych::cohen.kappa(data.frame(test_data_CESS$res$Operational_Lv, test_data_CESS$res$ALD))
table(OP=test_data_CESS$res$Operational_Lv, ALD=test_data_CESS$res$ALD)
true_data <- genSimData(item_loc_range = c(100, 500), loc_by = 1, nitem = 100, nlevel = 3, correlation = 0.5, type_seq = "little")
test_data_WESS <- simEstCutScore(true_data, WESS = T)
test_data_WESS$selected_CP
mkPlot(test_data_WESS$res, WESS = T);
estCor(test_data_WESS$res)
table(OP=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
test_data_CESS <- simEstCutScore(true_data, WESS = F)
test_data_CESS$selected_CP
mkPlot(test_data_CESS$res, WESS = F);
estCor(test_data_CESS$res)
table(OP=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
true_data <- genSimData(item_loc_range = c(100, 500), loc_by = 1, nitem = 100, nlevel = 3, correlation = 0.5, type_seq = "random")
c(level2=head(which(true_data$Operational_Lv == "Level2"),1),level3=
head(which(true_data$Operational_Lv == "Level3"),1))
test_data_WESS <- simEstCutScore(true_data, WESS = T)
test_data_WESS$selected_CP
mkPlot(test_data_WESS$res, WESS = T);
estCor(test_data_WESS$res)
table(OP=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
test_data_CESS <- simEstCutScore(true_data, WESS = F)
test_data_CESS$selected_CP
mkPlot(test_data_CESS$res, WESS = F);
estCor(test_data_CESS$res)
table(OP=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
# Large number of items----------------------------------
true_data <- genSimData(item_loc_range = c(100, 500), loc_by = 1, nitem = 1000, nlevel = 3, correlation = 0.5, type_seq = "random")
c(level2=head(which(true_data$Operational_Lv == "Level2"),1),level3=
head(which(true_data$Operational_Lv == "Level3"),1))
test_data_WESS <- simEstCutScore(true_data, WESS = T)
test_data_WESS$selected_CP
mkPlot(test_data_WESS$res, WESS = T);
estCor(test_data_WESS$res)
table(OP=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
table(OP=test_data_WESS$res$Operational_Lv, true_data$Operational_Lv)
test_data_CESS <- simEstCutScore(true_data, WESS = F)
test_data_CESS$selected_CP
mkPlot(test_data_CESS$res, WESS = F);
estCor(test_data_CESS$res)
table(OP=test_data_CESS$res$Operational_Lv, ALD=test_data_CESS$res$ALD)
table(OP=test_data_CESS$res$Operational_Lv, true_data$Operational_Lv)
# High correlation between L_i^((ALD) ) and RP_i----------------------------------
# Low frequency/prevalence of outliers----------------------------------
# more levels----------------------------------
true_data <- genSimData(item_loc_range = c(100, 500), loc_by = 1, nitem = 1000, nlevel = 5, correlation = 0.5, type_seq = "random")
test_data_WESS <- simEstCutScore(true_data, WESS = T)
test_data_WESS$selected_CP
mkPlot(test_data_WESS$res, WESS = T);
estCor(test_data_WESS$res)
table(OP=test_data_WESS$res$Operational_Lv, ALD=test_data_WESS$res$ALD)
test_data_CESS <- simEstCutScore(true_data, WESS = F)
test_data_CESS$selected_CP
mkPlot(test_data_CESS$res, WESS = F);
estCor(test_data_CESS$res)
table(OP=test_data_CESS$res$Operational_Lv, ALD=test_data_CESS$res$ALD)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.