#' compstatslib interactive_t_test() function
#'
#' Interactive visualization function that allows one to *manipulate* the parameters that affect hypothesis testing in order to see how their variation influences the null t and alternative t distributions, and statistical power.
#'
#' @param diff The test difference.
#' @param sd Population standard deviation.
#' @param n Sample size.
#' @param alpha Significance level.
#'
#' @usage
#' interactive_t_test()
#'
#' One can click on the gear icon on the top-left corner of the plotting area to open the parameter settings.
#' The movement of the alternative t-statistics distribution with respect to the null distribution will be visible, as well as the consequent change in statistical power.
#'
#' @seealso \code{\link{plot_t_test}}
#'
#' @export
interactive_t_test <- function() {
manipulate::manipulate(
plot_t_test(diff, sd, n, alpha, error_matrix),
diff = manipulate::slider(0, 4, step = 0.1, initial = 0.5),
sd = manipulate::slider(1, 5, step = 0.1, initial = 4),
n = manipulate::slider(2, 500, step = 1, initial = 100),
alpha = manipulate::slider(0.01, 0.1, step = 0.01, initial = 0.05),
error_matrix = manipulate::checkbox(initial = FALSE, label = "Error Matrix")
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.