#
# This file reads the raw data for the serengeti dataset, and convert it
# to a form that is compatible with ditributing it within and R package.
#
# Note that ideally it would convert raw data into R-ready data, but we
# actually start from intermediate files.
#
# See also: https://github.com/tee-lab/spacetime-csd/
#
#
datdir <- './data-raw/serengeti/'
files <- dir(paste0(datdir, "matrices"), full = TRUE)
# Read matrices
matrices <- lapply(files, read.csv, sep = ",", header = FALSE)
names(matrices) <- files
matrices <- lapply(matrices, function(x) as.matrix(x)>0)
# Number of points to keep
minn <- 3 # 2
maxn <- length(matrices) - 4 # 11
matrices <- matrices[minn:maxn]
ics <- generic_spews(matrices,
subsize = 5,
abs_skewness = FALSE,
moranI_coarse_grain = TRUE)
# Read rain data
rain <- read.csv(paste0(datdir, 'serengeti_rain.dat'), header = FALSE)
rain <- rain[minn:maxn, "V1"]
# Note: we compensate a shift in water values here as transect 5 shifts at
# 730 mm/y and not 590. Ideally we would start from the raw data but for
# illustration purposes this is good enough and the slicing of matrices is hard
# to reproduce exactly (see article).
rain <- rain + (730 - 590)
plot(ics, rain) +
geom_vline(xintercept = 730)
# Compute indicators for testing
# spcs <- spectral_sews(matrices,
# sdr_low_range = c(0, .2),
# sdr_high_range = c(.8, 1))
# spcs.test <- indictest(spcs)
#
# plot(spcs, along = rain)
# plot(spcs.test, along = rain) +
# geom_vline(xintercept = 730, color = "red", linetype = "dashed")
# Save datasets
serengeti <- matrices
names(serengeti) <- NULL
serengeti.rain <- rain
use_data(serengeti, overwrite = TRUE)
use_data(serengeti.rain, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.