genSmoothingCovIMA | R Documentation |
genSmoothingCovIMA
runs the image mean anomaly (IMA) algorithm
with covariates \insertCitemilitino2018improvingRGISTools.
genSmoothingCovIMA( rStack, cStack, Img2Process = NULL, nDays = 3, nYears = 1, r.dates, fact = 5, fun = mean, aFilter = c(0.05, 0.95), snow.mode = FALSE, out.name = "out", ... )
rStack |
a |
cStack |
a |
Img2Process |
a |
nDays |
a |
nYears |
a |
r.dates |
a |
fact |
a |
fun |
a |
aFilter |
a |
snow.mode |
logical argument. If |
out.name |
the name of the folder containing the filled/smoothed images when saved in the Hard Disk Drive (HDD). |
... |
arguments for nested functions:
|
This filling/smoothing method was developed by \insertCitemilitino2018improving;textualRGISTools. This technique decomposes a time series of images into a new series of mean and anomaly images. The procedure applies the filling/smoothing algorithm with covariates over the anomaly images. The procedure requires a proper definition of a temporal neighbourhood for the target image and aggregation factor.
a RasterStack
with the filled/smoothed images.
militino2018improvingRGISTools
## Not run: set.seed(0) # load example ndvi and dem data of Navarre data(ex.ndvi.navarre) data(ex.dem.navarre) # plot example data genPlotGIS(ex.ndvi.navarre) genPlotGIS(ex.dem.navarre) # distorts 5% of the original ndvi data by # altering 50% its values for(x in c(2,5)){ aux <- sampleRandom(ex.ndvi.navarre[[x]], ncell(ex.ndvi.navarre) * 0.05, cells = TRUE, na.rm = TRUE) ex.ndvi.navarre[[x]][aux[,1]] <- aux[,2] * 1.5 } genPlotGIS(ex.ndvi.navarre) # smoothing the image using the DEM as covariate smth.ndvi <- genSmoothingCovIMA(rStack = ex.ndvi.navarre, cStack = ex.dem.navarre, Img2Process = c(2)) # plot the distorted 1, smoothed 1, # distorted 5, smoothed 5 images plot(stack(ex.ndvi.navarre[[2]], smth.ndvi[[1]], ex.ndvi.navarre[[5]], smth.ndvi[[2]])) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.