View source: R/genSmoothingIMA.R
genSmoothingIMA | R Documentation |
genSmoothingIMA
is the implementation of a spatio temporal method
called image mean anomaly (IMA) for gap filling and smoothing satellite
data \insertCitemilitino2019interpolationRGISTools.
genSmoothingIMA( rStack, Img2Fill = NULL, nDays = 3, nYears = 1, fact = 5, fun = mean, r.dates, aFilter = c(0.05, 0.95), only.na = FALSE, factSE = 8, predictSE = FALSE, snow.mode = FALSE, out.name = "outname", ... )
rStack |
a |
Img2Fill |
a |
nDays |
a |
nYears |
a |
fact |
a |
fun |
a |
r.dates |
a |
aFilter |
a |
only.na |
logical argument. If |
factSE |
the |
predictSE |
calculate the standard error instead the prediction. |
snow.mode |
logical argument. If |
out.name |
the name of the folder containing the smoothed/filled images when saved in the Hard Disk Device (HDD). |
... |
arguments for nested functions:
|
This filling/smoothing method was developed by \insertCitemilitino2019interpolation;textualRGISTools. This technique decomposes a time series of images into a new series of mean and anomaly images. The procedure applies the smoothing algorithm over the anomaly images. The procedure requires a proper definition of a temporal neighbourhood for the target image and aggregation factor.
a RasterStack
with the filled/smoothed images.
militino2019interpolationRGISTools
## Not run: # load an example of NDVI time series in Navarre data(ex.ndvi.navarre) # the 2 images to be filled and the neighbourhood genPlotGIS(ex.ndvi.navarre) # filled images tiles.mod.ndvi.filled <- genSmoothingIMA(ex.ndvi.navarre, Img2Fill = c(1), only.na=TRUE) # show the filled images genPlotGIS(tiles.mod.ndvi.filled) # plot comparison of the cloud and the filled images tiles.mod.ndvi.comp <- stack(ex.ndvi.navarre[[1]], tiles.mod.ndvi.filled[[1]], ex.ndvi.navarre[[2]], tiles.mod.ndvi.filled[[2]]) genPlotGIS(tiles.mod.ndvi.comp, layout=c(2, 2)) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.