#' Distribution Statistics
#'
#' @family Logistic
#' @family Distribution Statistics
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will take in a tibble and returns the statistics
#' of the given type of `tidy_` distribution. It is required that data be
#' passed from a `tidy_` distribution function.
#'
#' @description Returns distribution statistics in a tibble.
#'
#' @param .data The data being passed from a `tidy_` distribution function.
#'
#' @examples
#' library(dplyr)
#'
#' tidy_logistic() |>
#' util_logistic_stats_tbl() |>
#' glimpse()
#'
#' @return
#' A tibble
#'
#' @export
#'
util_logistic_stats_tbl <- function(.data) {
# Immediate check for tidy_ distribution function
if (!"tibble_type" %in% names(attributes(.data))) {
rlang::abort(
message = "You must pass data from the 'tidy_dist' function.",
use_cli_format = TRUE
)
}
if (attributes(.data)$tibble_type != "tidy_logistic") {
rlang::abort(
message = "You must use 'tidy_logistic()'",
use_cli_format = TRUE
)
}
# Data
data_tbl <- dplyr::as_tibble(.data)
atb <- attributes(data_tbl)
mu <- atb$.location
s <- atb$.scale
stat_mean <- mu
stat_mode <- mu
stat_coef_var <- ((s^2) * (pi^2)) / 3
stat_sd <- abs(sqrt(stat_coef_var))
stat_skewness <- 0
stat_kurtosis <- 6 / 5
# Data Tibble
ret <- dplyr::tibble(
tidy_function = atb$tibble_type,
function_call = atb$dist_with_params,
distribution = dist_type_extractor(atb$tibble_type),
distribution_type = atb$distribution_family_type,
points = atb$.n,
simulations = atb$.num_sims,
mean = stat_mean,
mode_lower = stat_mode,
range = paste0("0 to Inf"),
std_dv = stat_sd,
coeff_var = stat_coef_var,
skewness = stat_skewness,
kurtosis = stat_kurtosis,
computed_std_skew = tidy_skewness_vec(data_tbl$y),
computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
ci_lo = ci_lo(data_tbl$y),
ci_hi = ci_hi(data_tbl$y)
)
# Return
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.