#' Distribution Statistics
#'
#' @family Triangular
#' @family Distribution Statistics
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will take in a tibble and returns the statistics
#' of the given type of `tidy_` distribution. It is required that data be
#' passed from a `tidy_` distribution function.
#'
#' @description Returns distribution statistics in a tibble.
#'
#' @param .data The data being passed from a `tidy_` distribution function.
#'
#' @examples
#' library(dplyr)
#'
#' tidy_triangular() |>
#' util_triangular_stats_tbl() |>
#' glimpse()
#'
#' @return
#' A tibble
#'
#' @name util_triangular_stats_tbl
NULL
#' @export
#' @rdname util_triangular_stats_tbl
util_triangular_stats_tbl <- function(.data) {
# Immediate check for tidy_ distribution function
if (!"tibble_type" %in% names(attributes(.data))) {
rlang::abort(
message = "You must pass data from the 'tidy_dist' function.",
use_cli_format = TRUE
)
}
if (attributes(.data)$tibble_type != "tidy_triangular") {
rlang::abort(
message = "You must use 'tidy_chisquare()'",
use_cli_format = TRUE
)
}
# Data
data_tbl <- dplyr::as_tibble(.data)
atb <- attributes(data_tbl)
a <- atb$.min
b <- atb$.mode
c <- atb$.max
stat_mean <- (a + b + c) / 3
stat_median <- if (c >= (a+b)/2) {
(a + (sqrt((b-a)*(c-a))/2))
} else {
(b - (sqrt((b-1)*(b-c))/2))
}
stat_mode <- c
stat_range <- range(data_tbl$y)
stat_variance <- ((a^2) + (b^2) + (c^2) - (a*b) - (a*c) - (b*c)) / 18
stat_skewness <- ((sqrt(2) * (a + b - (2*c))) * ((2*a) - b - c) * (a - 2*b +c)) / 5*(a^2 + b^2 + c^2 - a*b - a*c - b*c)^(3/2)
stat_kurtosis <- -(3/5)
stat_entropy <- 0.5 * log((b-a)/2)
# Data Tibble
ret <- dplyr::tibble(
tidy_function = atb$tibble_type,
function_call = atb$dist_with_params,
distribution = dist_type_extractor(atb$tibble_type),
distribution_type = atb$distribution_family_type,
points = atb$.n,
simulations = atb$.num_sims,
mean = stat_mean,
median = stat_median,
mode = stat_mode,
range_low = stat_range[[1]],
range_high = stat_range[[2]],
variance = stat_variance,
skewness = stat_skewness,
kurtosis = stat_kurtosis,
entropy = stat_entropy,
computed_std_skew = tidy_skewness_vec(data_tbl$y),
computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
ci_lo = ci_lo(data_tbl$y),
ci_hi = ci_hi(data_tbl$y)
)
# Return
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.