View source: R/calibrate-plot-list.R
| calibrate_and_plot | R Documentation | 
This function is a helper function. It will take in a set of workflows and then
perform the modeltime::modeltime_calibrate() and modeltime::plot_modeltime_forecast().
calibrate_and_plot(
  ...,
  .type = "testing",
  .splits_obj,
  .data,
  .print_info = TRUE,
  .interactive = FALSE
)
| ... | The workflow(s) you want to add to the function. | 
| .type | Either the training(splits) or testing(splits) data. | 
| .splits_obj | The splits object. | 
| .data | The full data set. | 
| .print_info | The default is TRUE and will print out the calibration accuracy tibble and the resulting plotly plot. | 
| .interactive | The defaults is FALSE. This controls if a forecast plot is interactive or not via plotly. | 
This function expects to take in workflows fitted with training data.
The original time series, the simulated values and a some plots
Steven P. Sanderson II, MPH
Other Utility: 
auto_stationarize(),
internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(),
internal_ts_forward_event_tbl(),
model_extraction_helper(),
ts_get_date_columns(),
ts_info_tbl(),
ts_is_date_class(),
ts_lag_correlation(),
ts_model_auto_tune(),
ts_model_compare(),
ts_model_rank_tbl(),
ts_model_spec_tune_template(),
ts_qq_plot(),
ts_scedacity_scatter_plot(),
ts_to_tbl(),
util_difflog_ts(),
util_doublediff_ts(),
util_doubledifflog_ts(),
util_log_ts(),
util_singlediff_ts()
## Not run: 
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(workflows))
data <- ts_to_tbl(AirPassengers) %>%
  select(-index)
splits <- timetk::time_series_split(
   data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)
rec_obj <- recipe(value ~ ., data = training(splits))
model_spec <- linear_reg(
   mode = "regression"
   , penalty = 0.1
   , mixture = 0.5
) %>%
   set_engine("lm")
wflw <- workflow() %>%
   add_recipe(rec_obj) %>%
   add_model(model_spec) %>%
   fit(training(splits))
output <- calibrate_and_plot(
  wflw
  , .type = "training"
  , .splits_obj = splits
  , .data = data
  , .print_info = FALSE
  , .interactive = FALSE
 )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.