bayesvl plot utilities | R Documentation |
Provides plot methods and the interface to the MCMC module in the bayesplot package for plotting MCMC draws and diagnostics for an object of class bayesvl
.
# Plot network diagram to visualize the model bvl_bnPlot(dag, ...) # Plots historgram of regression parameters computed from posterior draws in grid layout bvl_plotParams (dag, row = 2, col = 2, credMass = 0.89, params = NULL) # The interface to mcmc_intervals for plotting uncertainty intervals # computed from posterior draws bvl_plotIntervals (dag, params = NULL, fun = "stat", stat = "mean", prob = 0.8, prob_outer = 0.95, color_scheme = "blue", labels = NULL) # The interface to mcmc_intervals for plotting density computed from posterior draws bvl_plotAreas (dag, params = NULL, fun = "stat", stat = "mean", prob = 0.8, prob_outer = 0.95, color_scheme = "blue", labels = NULL) bvl_plotPairs (dag, params = NULL, fun = "stat", stat = "mean", prob = 0.8, prob_outer = 0.95, color_scheme = "blue", labels = NULL) bvl_plotDensity (dag, params = NULL, size = 1, labels = NULL) bvl_plotDensity2d(dag, x, y, color = NULL, color_scheme = "red", labels = NULL) bvl_plotTrace (dag, params = NULL) bvl_plotDiag (dag) bvl_plotGelman (dag, params = NULL) bvl_plotGelmans (dag, params = NULL, row = 2, col = 2) bvl_plotAcfs ( dag, params = NULL, row = 2, col = 2) bvl_plotTest (dag, y_name, test_name, n = 200, color_scheme = "blue")
dag |
an object of class |
params |
Optional: character vector of parameter names. |
fun |
Optional: statistic function. |
stat |
Optional: the plotting function to call. |
prob |
Optional: the probability mass to include in the inner interval. Default is 0.8. |
prob_outer |
Optional: the probability mass to include in the outer interval. Default is 0.95. |
row |
Optional: number of rows of grid layout. |
col |
Optional: number of columns of grid layout. |
credMass |
Optional: specifying the mass within the credible interval. Default is 0.89. |
size |
Optional: the size of line width. |
color_scheme |
Optional: color scheme. Default is "blue" |
... |
extra arguments from the generic method |
y_name |
a character string. Name of outcome variable |
test_name |
a character string. Name of test variable and test value |
n |
number of yrep values to plot |
x |
a character string. Name of x parameter to pair with |
y |
a character string. Name of y parameter to pair with |
color |
a character string. Variable for color of points on density plot |
labels |
Optional: character vector of parameter labels. |
bvl_plotIntervals(), bvl_plotPairs()
return a ggplot object that can be further customized using the ggplot2 package.
La Viet-Phuong, Vuong Quan-Hoang
For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:
## create network model model <- bayesvl() ## add the observed data nodes model <- bvl_addNode(model, "O", "binom") model <- bvl_addNode(model, "Lie", "binom") model <- bvl_addNode(model, "Viol", "binom") model <- bvl_addNode(model, "VB", "binom") model <- bvl_addNode(model, "VC", "binom") model <- bvl_addNode(model, "VT", "binom") model <- bvl_addNode(model, "Int1", "binom") model <- bvl_addNode(model, "Int2", "binom") ## add the tranform data nodes and arcs as part of the model model <- bvl_addNode(model, "B_and_Viol", "trans") model <- bvl_addNode(model, "C_and_Viol", "trans") model <- bvl_addNode(model, "T_and_Viol", "trans") model <- bvl_addArc(model, "VB", "B_and_Viol", "*") model <- bvl_addArc(model, "Viol", "B_and_Viol", "*") model <- bvl_addArc(model, "VC", "C_and_Viol", "*") model <- bvl_addArc(model, "Viol", "C_and_Viol", "*") model <- bvl_addArc(model, "VT", "T_and_Viol", "*") model <- bvl_addArc(model, "Viol", "T_and_Viol", "*") model <- bvl_addArc(model, "B_and_Viol", "O", "slope") model <- bvl_addArc(model, "C_and_Viol", "O", "slope") model <- bvl_addArc(model, "T_and_Viol", "O", "slope") model <- bvl_addArc(model, "Viol", "O", "slope") model <- bvl_addNode(model, "B_and_Lie", "trans") model <- bvl_addNode(model, "C_and_Lie", "trans") model <- bvl_addNode(model, "T_and_Lie", "trans") model <- bvl_addArc(model, "VB", "B_and_Lie", "*") model <- bvl_addArc(model, "Lie", "B_and_Lie", "*") model <- bvl_addArc(model, "VC", "C_and_Lie", "*") model <- bvl_addArc(model, "Lie", "C_and_Lie", "*") model <- bvl_addArc(model, "VT", "T_and_Lie", "*") model <- bvl_addArc(model, "Lie", "T_and_Lie", "*") model <- bvl_addArc(model, "B_and_Lie", "O", "slope") model <- bvl_addArc(model, "C_and_Lie", "O", "slope") model <- bvl_addArc(model, "T_and_Lie", "O", "slope") model <- bvl_addArc(model, "Lie", "O", "slope") model <- bvl_addNode(model, "Int1_or_Int2", "trans") model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+") model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+") model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint") ## Plot network diagram to visualize the model bvl_bnPlot(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.