bayesvl stan utilities | R Documentation |
Build Stan models from directed acyclic graph of an object of class bayesvl
.
# build Stan models from directed acyclic graph. bvl_model2Stan(dag, ppc = "") # compile and simulate samples from the model. bvl_modelFit(dag, data, warmup = 1000, iter = 5000, chains = 2, ppc = "", ...) # summarize the stan priors used for the model. bvl_stanPriors(dag) # summarize the stan parameters used for the model. bvl_stanParams(dag) # summarize the generated formula at the node. bvl_formula(dag, nodeName, outcome = T, re = F)
dag |
an object of class |
data |
a data frame or list containing the data |
warmup |
Optional: Number of warmup iterations. By default, half of iter |
iter |
Optional: Number of iterations of sampling. Default is 5000 |
chains |
Optional: Number of independent chains to sample from. Default is 2 |
ppc |
Optional: a character string contains posterior predictive check scripts |
... |
extra arguments from the generic method |
nodeName |
A character string contains the node name |
outcome |
Optional: Whether show out distribution |
re |
Optional: Whether run recursive for all up-level nodes |
bvl_model2Stan()
return character string of rstan code generated from the model.
bvl_modelFit()
return an object class bayesvl
which contains result with the following slots.
model |
Stan model code |
stanfit |
|
standata |
The data |
pars |
Parameter names monitored in samples |
formula |
Generated formula from the model |
bvl_stanPriors()
return character string of rstan priors generated from the model.
bvl_stanParams()
return character string of rstan parameters generated from the model.
La Viet-Phuong, Vuong Quan-Hoang
For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:
# Design the model in directed acyclic graph model <- bayesvl() model <- bvl_addNode(model, "Lie", "binom") model <- bvl_addNode(model, "B", "binom") model <- bvl_addNode(model, "C", "binom") model <- bvl_addNode(model, "T", "binom") model <- bvl_addArc(model, "B", "Lie", "slope") model <- bvl_addArc(model, "C", "Lie", "slope") model <- bvl_addArc(model, "T", "Lie", "slope") # Generate the Stan model's code model_string <- bvl_model2Stan(model) cat(model_string) # Show priors in generated Stan model bvl_stanPriors(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.