knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

We provide a detailed demo of the usage for the \verb+SIS+ package. This package implements the sure independence screening algorithm.

library(formatR)

Sure Independence Screening{#sis}

Installation{#install}

SIS can be installed from Github.

library(devtools)
devtools::install_github("statcodes/SIS", force=TRUE)

Then we can load the package, as well as other relevant packages:

library(SIS)
library(pROC)

Quickstart{#fit}

We will show in this section how to use the SIS package.

First, we generate a linear model with the first five predictors as signals.

set.seed(0)
n = 400; p = 50; rho = 0.5
corrmat = diag(rep(1-rho, p)) + matrix(rho, p, p)
corrmat[,4] = sqrt(rho)
corrmat[4, ] = sqrt(rho)
corrmat[4,4] = 1
corrmat[,5] = 0
corrmat[5, ] = 0
corrmat[5,5] = 1
cholmat = chol(corrmat)
x = matrix(rnorm(n*p, mean=0, sd=1), n, p)
x = x%*%cholmat

# gaussian response 
set.seed(1)
b = c(4,4,4,-6*sqrt(2),4/3)
y=x[, 1:5]%*%b + rnorm(n)

SIS screening without iteration{#SIS}

Next, we apply the SIS screening without iteration.

# SIS without regularization
model10 = SIS(x, y, family='gaussian', iter = FALSE)

# Getting the final selected variables after regularization step
model10$ix

# Getting the ranked list of variables from the screening step
model10$sis.ix0

# The top 10 ranked variables from the screening step
model10$ix0[1:10]

Iterative SIS {#ISIS}

Now, we apply the SIS screening with iteration and combined with SCAD penalty.

# SIS with regularization
model11 = SIS(x, y, family='gaussian', penalty = 'SCAD', iter = TRUE)

# Getting the final selected variables
model10$ix

# The top 10 ranked variables for the final screening step
model11$ix0[1:10]

# The top 10 ranked variables for each screening step
lapply(model11$ix_list,f<-function(x){x[1:10]})

Screening with binary response{#SIS-binary}

set.seed(2)
feta <- x[, 1:5] %*% b
fprob <- exp(feta) / (1 + exp(feta))
y <- rbinom(n, 1, fprob)
model21 <- SIS(x, y, family = "binomial", tune = "bic")

# Getting the final selected variables
model21$ix

# The top 10 ranked variables for the final screening step
model11$ix0[1:10]

# The top 10 ranked variables for each screening step
lapply(model11$ix_list,f<-function(x){x[1:10]})

Screening with Cox model for survival data{#SIS-cox}

set.seed(4)
b <- c(4, 4, 4, -6 * sqrt(2), 4 / 3)
myrates <- exp(x[, 1:5] %*% b)
Sur <- rexp(n, myrates)
CT <- rexp(n, 0.1)
Z <- pmin(Sur, CT)
ind <- as.numeric(Sur <= CT)
y <- survival::Surv(Z, ind)
model41 <- SIS(x, y,
  family = "cox", penalty = "lasso", tune = "bic",
  varISIS = "aggr", seed = 41
)
model42 <- SIS(x, y,
  family = "cox", penalty = "lasso", tune = "bic",
  varISIS = "cons", seed = 41
)
model41$ix
model42$ix

Screening with multi-categorical response{#SIS-multinom}

y <- as.factor(iris$Species)
noise <- matrix(rnorm(nrow(iris)*200),nrow(iris),200)
x <- cbind(as.matrix(iris[,-5]),noise)

model21 <- SIS(x, y, family = "multinom", penalty = 'lasso')

# Getting the final selected variables
model21$ix

# The top 10 ranked variables for the final screening step
model21$ix0[1:10]

# The top 10 ranked variables for each screening step
lapply(model21$ix_list,f<-function(x){x[1:10]})

Real data example (leukemia): Iterative Sure Independence Screening paired with elastic-net{#ISIS-enet-leukemia}

# Loading data: Gene expression data from 7129 genes and 38 patients with acute leukemias (27 in class acute lymphoblastic leukemia and 11 in class acute myeloid leukemia) from the microarray study of Golub et al. (1999). These data can be found in: http://wwwprod.broadinstitute.org/cgi-bin/cancer/datasets.cgi 

load('leukemia.train.RData')
load('leukemia.test.RData')

# Getting the predictors and response variables
x_train <- as.matrix(leukemia.train[,1:7129])
y_train <- leukemia.train[,7130]
x_test <- as.matrix(leukemia.test[,1:7129])
y_test <- leukemia.test[,7130]


# Calling SIS and calculating the time taken for the algorithm to run
start.time <- Sys.time()
sis <- SIS(x_train, y_train, family = "binomial", penalty='enet',
           tune='cv', nfolds = 10, iter = TRUE, iter.max = 10,
           seed = 123, nsis=dim(x_train)[1]/2, standardize = TRUE,
           boot_ci=TRUE)
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken
# Getting the AUC in the test set
pred <- predict(sis, x_test, type='class')
auc(pred[,1], y_test)

# Getting the confidence intervals of the selected variables, calculated using bootstrap
sis$cis[2:12,c(1,5,6,7)]

Real data example (prostate cancer): Iterative Sure Independence Screening paired with elastic-net{#ISIS-enet}

# Loading data: Gene expression data from 12600 genes and 52 patients with prostate tumors and 50 normal specimens from the microarray study of Singh et al. (2002). These data can be found in: \source{http://wwwprod.broadinstitute.org/cgi-bin/cancer/datasets.cgi} 
load('prostate.train.RData')
load('prostate.test.RData')

# Getting the predictors and response variables
x_train <- as.matrix(prostate.train[,1:12600])
y_train <- prostate.train[,12601]
x_test <- as.matrix(prostate.test[,1:12600])
y_test <- prostate.test[,12601]

# Calling SIS and calculating the time taken for the algorithm to run
start.time <- Sys.time()
sis <- SIS(x_train, y_train, family = "binomial", penalty='enet',
           nfolds = 10, iter = TRUE, iter.max = 10,tune='cv', 
           seed = 123, nsis=dim(x_train)[1]/2, standardize = TRUE,
           boot_ci=TRUE)
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken
# Getting the AUC in the test set
pred <- predict(sis, x_test, type='class')
auc(pred[,1], y_test)

# Getting the confidence intervals of the selected variables, calculated using bootstrap
sis$cis[2:12,c(1,5,6,7)]


statcodes/SIS documentation built on March 31, 2024, 6:57 p.m.