Description Usage Arguments Details Value Author(s) References Examples
Estimating projection matrices and parameter estimates for a single model.
1 2 | estimate_ridge(Y, X, K, lambda, compute_kernel_terms = TRUE,
converge_thres = 1e-04)
|
Y |
(vector of length n) Reponses of the dataframe. |
X |
(dataframe, n*p) Fixed effects variables in the dataframe (could contains several subfactors). |
K |
(list of matrices) A nested list of kernel term matrices, corresponding to each kernel term specified in the formula for a base kernel function in kern_func_list. |
lambda |
(numeric) A numeric string specifying the range of tuning parameter to be chosen. The lower limit of lambda must be above 0. |
compute_kernel_terms |
(logic) Whether to computing effect for each individual terms. If FALSE then only compute the overall effect. |
converge_thres |
(numeric) The convergence threshold for computing kernel terms. |
For a single model, we can calculate the output of gaussian process regression, the solution is given by
\hat{β}=[X^T(K+λ I)^{-1}X]^{-1}X^T(K+λ I)^{-1}y
\hat{α}=(K+λ I)^{-1}(y-\hat{β}X)
.
lambda |
(numeric) The selected tuning parameter based on the estimated ensemble kernel matrix. |
beta |
(matrix, p*1) Fixed effects estimator of the model. |
alpha |
(matrix, n*length(K)) Random effects estimator for each kernel term specified in the formula. |
proj_matrix |
(list of length 4) Estimated projection matrices of the model. |
Wenying Deng
Andreas Buja, Trevor Hastie, and Robert Tibshirani. (1989) Linear Smoothers and Additive Models. Ann. Statist. Volume 17, Number 2, 453-510.
1 2 3 | estimate_ridge(Y = CVEK:::model_matrices$y,
X = CVEK:::model_matrices$X, K = CVEK:::K_ens,
lambda = CVEK:::lambda_ens)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.