estimation: Conducting Gaussian Process Regression

Description Usage Arguments Details Value Author(s) See Also Examples

Description

Conduct gaussian process regression based on the estimated ensemble kernel matrix.

Usage

1
2
estimation(Y, X, K_list = list(NULL), mode = "loocv",
  strategy = "stack", beta_exp = 1, lambda = exp(seq(-10, 5)), ...)

Arguments

Y

(vector of length n) Reponses of the dataframe.

X

(dataframe, n*p) Fixed effects variables in the dataframe (could contains several subfactors).

K_list

(list of matrices) A nested list of kernel term matrices. The first level corresponds to each base kernel function in kern_func_list, the second level corresponds to each kernel term specified in the formula.

mode

(character) A character string indicating which tuning parameter criteria is to be used.

strategy

(character) A character string indicating which ensemble strategy is to be used.

beta_exp

(numeric/character) A numeric value specifying the parameter when strategy = "exp" ensemble_exp.

lambda

(numeric) A numeric string specifying the range of noise to be chosen. The lower limit of lambda must be above 0.

...

Additional parameters to pass to estimate_ridge.

Details

After obtaining the ensemble kernel matrix, we can calculate the outpur of gaussian process regression.

Value

lambda

(numeric) The selected tuning parameter based on the estimated ensemble kernel matrix.

beta

(matrix, p*1) Fixed effects estimator of the model.

alpha

(vector of length n) Random effects estimator of the estimated ensemble kernel matrix.

K

(matrix, n*n) Estimated ensemble kernel matrix.

u_hat

(vector of length K) A vector of weights of the kernels in the library.

base_est

(list of length 6) The detailed estimation results of K kernels.

Author(s)

Wenying Deng

See Also

strategy: ensemble

Examples

1
2
3
4
5
result <- estimation(Y = CVEK:::model_matrices$y, 
X = CVEK:::model_matrices$X, 
K_list = CVEK:::model_matrices$K, 
mode = "loocv", strategy = "stack", 
beta_exp = 1, lambda = exp(seq(-10, 5)))

statmlhb/CVEK documentation built on May 5, 2019, 3:47 a.m.