test_gene_overrepresentation | R Documentation |
test_gene_overrepresentation() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' with the GSEA statistics
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'spec_tbl_df'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'tbl_df'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'tidybulk'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'SummarizedExperiment'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
.data |
A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
.entrez |
The ENTREZ ID of the transcripts/genes |
.do_test |
A boolean column name symbol. It indicates the transcript to check |
species |
A character. For example, human or mouse. MSigDB uses the latin species names (e.g., \"Mus musculus\", \"Homo sapiens\") |
.sample |
The name of the sample column |
gene_sets |
A character vector. The subset of MSigDB datasets you want to test against (e.g. \"C2\"). If NULL all gene sets are used (suggested). This argument was added to avoid time overflow of the examples. |
gene_set |
DEPRECATED. Use gene_sets instead. |
'r lifecycle::badge("maturing")'
This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA. This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.
Undelying method: msigdbr::msigdbr(species = species) |> nest(data = -gs_cat) |> mutate(test = map( data, ~ clusterProfiler::enricher( my_entrez_rank, TERM2GENE=.x |> select(gs_name, entrez_gene), pvalueCutoff = 1 ) |> as_tibble() ))
A consistent object (to the input)
A 'spec_tbl_df' object
A 'tbl_df' object
A 'tidybulk' object
A 'SummarizedExperiment' object
A 'RangedSummarizedExperiment' object
print("Not run for build time.")
#se_mini = aggregate_duplicates(tidybulk::se_mini, .transcript = entrez)
#df_entrez = mutate(df_entrez, do_test = feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
## Not run:
test_gene_overrepresentation(
df_entrez,
.sample = sample,
.entrez = entrez,
.do_test = do_test,
species="Homo sapiens",
gene_sets =c("C2")
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.