View source: R/multiscaleSVDxpts.R
simlr_impute | R Documentation |
Impute missing SiMLR data in a specified column based on other columns
simlr_impute(
dataframe,
nms,
vecnum,
toimpute,
separator = "PC",
family = "gaussian"
)
dataframe |
A data frame containing the data to impute. |
nms |
A vector of base column names. |
vecnum |
A numeric value to append to the column names. |
toimpute |
The base name of the target column to be imputed. |
separator |
A string specifying the separator between the column name and feature. |
family |
A string specifying the GLM family (default is 'gaussian'). |
A data frame with imputed values.
set.seed(123)
n=50
df <- data.frame(
t1PC1 = rnorm(n),
t1aPC1 = rnorm(n),
dtPC1 = rnorm(n),
dtaPC1 = rnorm(n),
rsfPC1 = rnorm(n),
perfPC1 = rnorm(n)
)
df[ sample(1:nrow(df),20),6 ]=NA
nms <- c("t1", "t1a", "dt", "dta", "rsf", "perf")
vecnum <- 1
toimpute <- "perf"
df = simlr_impute(df, nms, vecnum, toimpute, family = 'gaussian')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.