as_CNN_temp_Y: Outcomes (Y) data format for a temporal CNN

View source: R/deepCNN.r

as_CNN_temp_YR Documentation

Outcomes (Y) data format for a temporal CNN

Description

Outcomes (Y) data format for a temporal CNN

Usage

as_CNN_temp_Y(y, timesteps = 1L)

Arguments

y

An outcome data set, usually a vector, matrix or data frame, returned by get_LSTM_XY.

timesteps

Number of timesteps; stands for the number of different periods within one sample (record) of the result, the resampled outcome matrix y.

Value

Dependent on the type of y and timesteps. If y is a factor, the result is a one-hot vector. If timesteps = NULL|1 a 2D-array with the dimensions samples and number of output units, representing a scalar outcome; if timesteps >= 2 a 3D-array with the dimensions samples, timesteps and number of output units, representing a sequence or multi-step outcome.

See Also

get_LSTM_XY, as_CNN_temp_X.

Other Convolutional Neural Network (CNN): alexnet(), as_CNN_image_X(), as_CNN_image_Y(), as_CNN_temp_X(), as_images_array(), as_images_tensor(), images_load(), images_resize(), inception_resnet_v2(), inception_v3(), lenet5(), mobilenet(), mobilenet_v2(), mobilenet_v3(), nasnet(), resnet, unet(), vgg, xception(), zfnet()


stschn/deepANN documentation built on June 25, 2024, 7:27 a.m.