as_images_tensor | R Documentation |
Convert list of image arrays to a tensor
as_images_tensor(imagelist, height, width, depth = NULL, channels = 3L)
imagelist |
A list of images returned by |
height |
The height of an image, equal to the number of rows. |
width |
The width of an image, equal to the number of columns. |
depth |
The depth of an 3D image. The default value |
channels |
The number of channels of an image. A color channel is a primary color (like red, green and blue),
equal to a color valence (denotes how light effects the color sensation of an eye or in common of the brain).
Primary colors can be mixed to produce any color.
A channel equal |
The supported types of images are 2D and 3D images. The resulting tensor has the corresponding shapes:
2D image: samples
(number of images), height
, width
and channels
.
3D image: samples
(number of images), height
, width
, depth
and channels
.
A tensor of corresponding shape depending on the type of images (2D or 3D images).
Other Convolutional Neural Network (CNN):
alexnet()
,
as_CNN_image_X()
,
as_CNN_image_Y()
,
as_CNN_temp_X()
,
as_CNN_temp_Y()
,
as_images_array()
,
images_load()
,
images_resize()
,
inception_resnet_v2()
,
inception_v3()
,
lenet5()
,
mobilenet()
,
mobilenet_v2()
,
mobilenet_v3()
,
nasnet()
,
resnet
,
unet()
,
vgg
,
xception()
,
zfnet()
# Get image file names
base_dir <- "c:/users/.../images" # any folder where image files are stored
filelist <- list.files(path = base_dir, pattern = "\\.jpg$", full.names = T) # JPEG images
# Image dimensions (2D images)
height <- 200L
width <- 200L
channels <- 3L
# with keras (no functions are specified)
CNN_X <- images_load(filelist, h = height, w = width, ch = channels) %>%
images_resize() %>%
as_images_array() %>%
as_images_tensor(height = height, width = width, channels = channels)
# with magick
magick_resize <- function(img, height, width) {
magick::image_scale(img, magick::geometry_size_pixels(width = width, height = height, preserve_aspect = FALSE))
}
magick_array <- function(img, channels) {
as.integer(magick::image_data(img, channels))
}
CNN_X <- images_load(filelist, FUN = magick::image_read) %>%
images_resize(FUN = magick_resize, h = height, w = width) %>%
as_images_array(FUN = magick_array, ch = "rgb") %>%
as_images_tensor(height = height, width = width, channels = channels)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.