# Set the validation row numbers
vs <- sample(nrow(engtotals), 5)
# Total number of iterations
N <- 60
# Number of burn in iterations
burn.in <- 10
# Number of thinning iterations
thin <- 1
# Set the model formula for binomial distribution based modeling
f1 <- noofhighweeks ~ jsa + log10(houseprice) + log(popdensity) + sqrt(no2)
## Independent error logistic regression
M1 <- Bcartime(formula = f1, data = engtotals, family = "binomial",
trials = engtotals$nweek, N = N, burn.in = burn.in, thin = thin,
verbose = TRUE)
summary(M1)
# Leroux model
M1.leroux <- Bcartime(formula = f1, data = engtotals, scol = "spaceid",
model = "leroux", W = Weng, family = "binomial", trials = engtotals$nweek,
N = N, burn.in = burn.in, thin = thin)
summary(M1.leroux)
# BYM model
M1.bym <- Bcartime(formula = f1, data = engtotals, scol = "spaceid",
model = "bym", W = Weng, family = "binomial", trials = engtotals$nweek,
N = N, burn.in = burn.in, thin = thin, verbose = FALSE)
summary(M1.bym)
# Validation for the Leroux model
M1.leroux.v <- Bcartime(formula = f1, data = engtotals, scol = "spaceid",
model = "leroux", W = Weng, family = "binomial", trials = engtotals$nweek,
validrows = vs, N = N, burn.in = burn.in, thin = thin, verbose = FALSE)
summary(M1.leroux.v)
## Poisson Distribution based models ####################################
# Model formula
f2 <- covid ~ offset(logEdeaths) + jsa + log10(houseprice) + log(popdensity) +
sqrt(no2)
# Independent error Poisson regression
M2 <- Bcartime(formula = f2, data = engtotals, family = "poisson", N = N,
burn.in = burn.in, thin = thin, verbose = FALSE)
summary(M2)
## Poisson regression with Leroux Model
M2.leroux <- Bcartime(formula = f2, data = engtotals, scol = "spaceid",
model = "leroux", family = "poisson", W = Weng, N = N, burn.in = burn.in,
thin = thin, verbose = FALSE)
summary(M2.leroux)
# Poisson regression with BYM Model
M2.bym <- Bcartime(formula = f2, data = engtotals, scol = "spaceid",
model = "bym", family = "poisson", W = Weng, N = N, burn.in = burn.in,
thin = thin)
summary(M2.bym)
## Gaussian distribution based models ###############
f3 <- sqrt(no2) ~ jsa + log10(houseprice) + log(popdensity)
# Independent error model
M3 <- Bcartime(formula = f3, data = engtotals, family = "gaussian", N = N,
burn.in = burn.in, thin = thin, verbose = FALSE)
summary(M3)
# Leroux model
M3.leroux <- Bcartime(formula = f3, data = engtotals, scol = "spaceid",
model = "leroux", family = "gaussian", W = Weng, N = N, burn.in = burn.in,
thin = thin, verbose = FALSE)
summary(M3.leroux)
## Validation
M3.leroux.v <- Bcartime(formula = f3, data = engtotals, scol = "spaceid",
model = "leroux", family = "gaussian", W = Weng, N = N, burn.in = burn.in,
thin = thin, validrows = vs, verbose = FALSE)
summary(M3.leroux.v)
\donttest{
## Spatio-temporal modeling ##################################################
head(engdeaths)
dim(engdeaths)
colnames(engdeaths)
vs <- sample(nrow(engdeaths), 5)
## Binomial distribution
nweek <- rep(1, nrow(engdeaths))
f1 <- highdeathsmr ~ jsa + log10(houseprice) + log(popdensity)
M1st_linear <- Bcartime(formula = f1, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", trials = nweek, W = Weng, model = "linear",
family = "binomial", package = "CARBayesST", N = N, burn.in = burn.in,
thin = thin, verbose = TRUE)
summary(M1st_linear)
M1st_sepspat <- Bcartime(formula = f1, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", trials = nweek, W = Weng, model = "sepspatial",
family = "binomial", package = "CARBayesST", N = N, burn.in = burn.in,
thin = thin, verbose = FALSE)
summary(M1st_sepspat)
M1st_ar <- Bcartime(formula = f1, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", trials = nweek, W = Weng, model = "ar", AR = 1,
family = "binomial", package = "CARBayesST", N = N, burn.in = burn.in,
thin = thin, verbose = FALSE)
summary(M1st_ar)
# Model validation
M1st_ar.v <- Bcartime(formula = f1, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", trials = nweek, W = Weng, model = "ar", AR = 1,
family = "binomial", package = "CARBayesST", N = N, burn.in = burn.in,
thin = thin, validrows = vs, verbose = FALSE)
summary(M1st_ar.v)
## Spatio temporal Poisson models###################################
colnames(engdeaths)
f2 <- covid ~ offset(logEdeaths) + jsa + log10(houseprice) + log(popdensity) +
n0
M2st_linear <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "linear", family = "poisson",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M2st_linear)
M2st_anova <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "anova", family = "poisson",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M2st_anova)
M2st_anova_nointer <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "anova", interaction = FALSE,
family = "poisson", package = "CARBayesST", N = N, burn.in = burn.in,
thin = thin, verbose = FALSE)
summary(M2st_anova_nointer)
M2st_sepspat <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "sepspatial", family = "poisson",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M2st_sepspat)
M2st_ar <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "ar", AR = 1, family = "poisson",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M2st_ar)
M2st_ar.v <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "ar", family = "poisson",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
validrows = vs, verbose = FALSE)
M2st_anova.v <- Bcartime(formula = f2, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "anova", family = "poisson",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
validrows = vs, verbose = FALSE)
summary(M2st_ar.v)
summary(M2st_anova.v)
## Spatio-temporal Normal models ###############################
colnames(engdeaths)
f3 <- sqrt(no2) ~ jsa + log10(houseprice) + log(popdensity)
M3st_linear <- Bcartime(formula = f3, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "linear", family = "gaussian",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M3st_linear)
M3st_anova <- Bcartime(formula = f3, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "anova", family = "gaussian",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M3st_anova)
M3st_anova_nointer <- Bcartime(formula = f3, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "anova", interaction = FALSE,
family = "gaussian", package = "CARBayesST", N = N, burn.in = burn.in,
thin = thin, verbose = FALSE)
summary(M3st_anova_nointer)
M3st_ar <- Bcartime(formula = f3, data = engdeaths, scol = "spaceid",
tcol = "Weeknumber", W = Weng, model = "ar", AR = 2, family = "gaussian",
package = "CARBayesST", N = N, burn.in = burn.in, thin = thin,
verbose = FALSE)
summary(M3st_ar)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.