# test that all plots can be built
devtools::load_all()
library(msod)
test_that("prediction plots for Gundagai and a single patch", {
model_data <- load_model_data()
new_data_mean <- get_new_data_mean(model_data)
data <- list()
current_values <- readRDS(system.file("data", "test-current_values_2patches.rds", package = packageName()))
current_values <- isolate(current_values)
data$Xocc <- newXocc_fromselected(current_values)
modwXocc <- msod::supplant_new_data(model_data, data$Xocc, toXocc = function(x){stdXocc(x, model_data$XoccProcess$center,
model_data$XoccProcess$scale,
model_data$XoccColNames)})
modwmeanXocc <- msod::supplant_new_data(model_data, new_data_mean, toXocc = function(x){stdXocc(x, model_data$XoccProcess$center,
model_data$XoccProcess$scale,
model_data$XoccColNames)})
data$species_prob_current <- msod::poccupancy_mostfavourablesite.jsodm_lv(modwXocc)
data$species_prob_ref <- msod::poccupancy_mostfavourablesite.jsodm_lv(modwmeanXocc)
data$spec_different <- todifferent(data$species_prob_current, data$species_prob_ref)
data$species_richness <- compute_richness(model_data, data$Xocc)
topten <- order(data$species_prob_current[, "median"], decreasing = TRUE)[1:10]
botten <- order(data$species_prob_current[, "median"], decreasing = FALSE)[1:10]
data$toptennames <- row.names(data$species_prob_current)[topten]
data$speciesinfo_topten <- speciesinfo[row.names(data$species_prob_current)[topten], ]
data$speciesinfo_botten <- speciesinfo[row.names(data$species_prob_current)[botten], ]
richness_plot(data$species_richness)
species_ggplot(
df = tocommon(species_prob_current),
title = "Most likely species",
add_plus = FALSE,
errorbar = TRUE)
species_ggplot(
df = spec_different,
title = "Locally prevalent species",
add_plus = TRUE)
species_plotly(
df = tocommon(species_prob_current),
title = "Most likely species at any patch",
add_plus = FALSE,
errorbar = TRUE)
})
test_that("prediction plots for Gundagai and two patches", {
model_data <- load_model_data()
new_data_mean <- get_new_data_mean(model_data)
selected_region <- "Gundagai"
current_values <- isolate(reactiveValuesToList(readRDS("./current_values_two_patches.rds")))
Xocc <- newXocc_fromselected(current_values)
species_prob_current <- msod::poccupancy_mostfavourablesite.jsodm_lv(model_data,
Xocc)
species_prob_ref <- msod::poccupancy_mostfavourablesite.jsodm_lv(model_data,
new_data_mean)
spec_different <- todifferent(species_prob_current, species_prob_ref)
species_richness <- compute_richness(model_data, Xocc)
richness_plot(species_richness)
species_ggplot(
df = tocommon(species_prob_current),
title = "Most likely species",
add_plus = FALSE,
errorbar = TRUE)
species_ggplot(
df = spec_different,
title = "Locally prevalent species",
add_plus = TRUE)
species_plotly(
df = tocommon(species_prob_current),
title = "Most likely species at any patch",
add_plus = FALSE,
errorbar = TRUE)
})
test_that("modalplots", {
model_data <- load_model_data()
new_data_mean <- get_new_data_mean(model_data)
selected_region <- "Gundagai"
current_values <- isolate(reactiveValuesToList(readRDS("./current_values_one_patch.rds")))
species_ggplotInModal(model_data, current_values, new_data_mean)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.