View source: R/supplant_with_new_data.R
supplant_new_data | R Documentation |
Supplant data in fitted object with new data for the purposes of predicting on new data
supplant_new_data( fit, Xocc, Xobs = NULL, ModelSite = NULL, y = NULL, toXocc = NULL, toXobs = NULL, ... )
fit |
Fitted object |
Xocc |
A dataframe of covariates related to occupancy. One row per ModelSite. Must also include the ModelSiteVars columns to uniquely specify ModelSite. |
Xobs |
A dataframe of covariates related to observations. One row per visit. Each column is a covariate. Must also include the ModelSiteVars columns to uniquely specify ModelSite. |
ModelSite |
A vector of integers of equal length to the number of visits. Each entry species for the corresponding visit, the of Xocc that was visited |
y |
A dataframe of species observations (1 or 0). Each column is a species. Rows must correspond to Xobs |
toXocc |
NULL to use a process saved by sflddata::save_process, otherwise a function that takes Xocc as the only input and returns a model matrix for the occupancy component. |
toXobs |
like |
fitold <- readRDS("../Experiments/7_4_modelrefinement/fittedmodels/7_4_13_model_2lv_e13.rds") fit <- translatefit(fitold) originalXocc <- unstandardise.designmatprocess(fit$XoccProcess, fit$data$Xocc) originalXocc <- cbind(ModelSite = 1:nrow(originalXocc), originalXocc) originalXobs <- unstandardise.designmatprocess(fit$XobsProcess, fit$data$Xobs) originalXobs <- cbind(ModelSite = fit$data$ModelSite, originalXobs) Xocc <- originalXocc[1:10, ] Xobs <- originalXobs[originalXobs$ModelSite %in% Xocc$ModelSite, ] y <- fit$data$y[originalXobs$ModelSite %in% Xocc$ModelSite, ] ModelSite <- as.integer(Xobs$ModelSite) fitwnewdata <- supplant_new_data(fit, Xocc, Xobs, ModelSite = ModelSite, y = y) ds_detection_residuals.fit(fitwnewdata) #detection residuals on this new data ds_occupancy_residuals.fit(fitwnewdata) #detection residuals on this new data fitwnewdata <- supplant_new_data(fit, Xocc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.