uiPreprocessing <- tabPanel(
title = h4("Preprocessing"),
value = 'preprocessing-tab',
tabsetPanel(
type = 'tabs',
id = 'preprocessing_tabset',
# Contaminants -------------------------------
tabPanel(title = 'Contaminants',
value = 'contaminants_tab',
# Use this to be able to use the shinydashboard stuff
shinyWidgets::useShinydashboard(),
sidebarLayout(
sidebarPanel(
id = 'sidebar',
width = 2,
checkboxInput(inputId = 'removeContaminantsInput',
label = h4('Remove Contaminants'),
value = TRUE),
uiOutput('fastaSelection'),
uiOutput('fastaInput'),
tags$div(
title = "The interactive version is under development since it might slow down, or crash the application",
shinyWidgets::switchInput(
inputId = "contaminantsInteractive",
label = "Interactive",
labelWidth = "80px",
value = FALSE,
offStatus = 'danger'),
)
),
mainPanel(
column(width = 10,
h4('Filter out the contaminant proteins.'),
br(),
shinydashboard::infoBoxOutput('contaminants_box',
width = 8),
br(),
br(),
hr(),
uiOutput('contaminantsUI')
)
)
)
),
# Filter Missing Values -------------------------------
tabPanel('Filter out missing values',
value = 'filter_tab',
sidebarLayout(
sidebarPanel(id = 'sidebar',
width = 2,
uiOutput('na_threshold')),
mainPanel(fluid = FALSE,
column(
width = 8,
height = 800,
shinycssloaders::withSpinner(
plotlyOutput('barplot_missvals'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px')
),
column(
width = 4,
uiOutput('triggerjs'),
shinycssloaders::withSpinner(
plotOutput('heatmap_nas'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px')
)
)
)
),
# Normalization -------------------------------
tabPanel('Normalization',
sidebarLayout(
sidebarPanel(id = 'sidebar',
width = 2,
checkboxInput(inputId = 'normalize_input',
label = h4('Use normalized intensities by variance stabilizing transformation (VSN)'),
value = TRUE),
value = TRUE
),
mainPanel(
print(h4('Normalization of the intensities')),
br(),
box(
shinycssloaders::withSpinner(
plotlyOutput('plot_before_normalization'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
),
shinycssloaders::withSpinner(
plotlyOutput('plot_after_normalization'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
)
)
)
),
# Imputation missing values -------------------------------
tabPanel('Imputation of the missing values',
value = 'imputation_tab',
sidebarLayout(
sidebarPanel(id = 'sidebar',
width = 2,
selectInput(inputId = 'input_imputation',
label = h4('Imputation type'),
choices = c('Manual Imputation' = 'Manual',
'Bayesian' = 'bpca',
'Quantile Regression'= 'QRILC',
'MinProb'= 'MinProb',
'Nearest neighbour averaging' = 'knn',
'MinProb' = 'MinProb',
'Maximum likelihood-based ' = 'MLE',
'Minimum Value' = 'min',
'Replace by 0' = 'zero',
'No imputation' = 'none'),
selected = 'Manual'),
uiOutput('manual_imputation_scale'),
uiOutput('manual_imputation_shift'),
checkboxInput(inputId = 'combined_imputation',
label = h4('Combine the samples into one plot'),
value = FALSE),
sliderInput('imputation_bins',
label = 'Number of bins',
min = 1,
max = 100,
value = 30)
),
mainPanel(
box(
shinycssloaders::withSpinner(
plotlyOutput('imputation'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
)
)
)
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.