tabpanel.train = fluidPage(theme = shinytheme("united"),
sidebarLayout(
sidebarPanel(
div(align = "center",
uiOutput("train.learner.sel"),
br(),
hr(),
uiOutput("model_overview")
)
),
mainPanel(
fluidRow(uiOutput("model.params"))
)
)
)
tabpanel.predict = fluidPage(theme = shinytheme("united"),
sidebarLayout(
sidebarPanel(
sidebarMenu(
menuItem("Predict on:"),
selectInput("newdatatype", "", choices = c("task", "new data"),
selected = "task"),
uiOutput("import.pred.ui"),
div(align = "center",
actionButton("predict.run", label = "Predict"),
br(),
hr(),
downloadButton("predict.download", "download predictions")
)
)
),
mainPanel(
tabBox(id = "predict.tab", selected = "test.set", side = "right", width = 12,
tabPanel("Predictions", value = "pred.res",
DT::dataTableOutput("predoverview")
),
tabPanel("Test Set", value = "test.set",
DT::dataTableOutput("import.pred.preview")
)
)
)
)
)
tabpanel.performance = fluidPage(theme = shinytheme("united"),
tabBox(id = "performance.tab", selected = "Performance", width = 12,
tabPanel("Performance",
fluidRow(
htmlOutput("performance.text"),
column(width = 12, align = "center",
uiOutput("perf.measures.sel"),
actionButton("performance.run", label = "Measure Performance"),
br(),
br(),
uiOutput("performance.overview", align = "left")
)
)
),
tabPanel("Visualisations",
htmlOutput("visualisation.text"),
fluidRow(
column(width = 12,
uiOutput("visualisation.selection"),
uiOutput("predictionplot.settings")
)
),
fluidRow(
column(width = 12,
verbatimTextOutput("confusion.matrix")
)
),
fluidRow(
column(width = 12,
plotOutput("prediction.plot")
),
column(width = 12,
plotOutput("prediction.plot.validation")
)
)
)
)
)
# tabpanel.modelling = fluidRow(
# tabBox(width = 12,
# tabPanel(title = "Train",
# # fluidRow(
# fluidRow(
# htmlOutput("train.text"),
# column(width = 4, align = "center",
# makeSidebar(
# uiOutput("train.learner.sel"),
# br(),
# hr(),
# uiOutput("model.overview")
# )
# ),
# column(width = 8, align = "center",
# fluidRow(uiOutput("model.params"))
# )
# )
# ),
# tabPanel(title = "Predict",
# htmlOutput("prediction.text"),
# fluidRow(
# column(width = 3, align = "center",
# makeSidebar(
# selectInput("newdatatype", "Predict on:", choices = c("task", "new data"),
# selected = "task"),
# conditionalPanel("input.newdatatype == 'new data'",
# selectInput("import.pred.type", "Type", selected = "mlr",
# choices = c("mlr", "OpenML", "CSV", "ARFF"))
# ),
# uiOutput("import.pred.ui"),
# actionButton("predict.run", label = "Predict"),
# br(),
# br()
# )
# ),
# column(width = 9, align = "center",
# )
# ),
# tabPanel(title = "Performance",
# htmlOutput("performance.text"),
# fluidRow(
# column(width = 12, align = "center",
# uiOutput("perf.measures.sel"),
# actionButton("performance.run", label = "Measure Performance"),
# br(),
# br(),
# uiOutput("performance.overview", align = "left")
# )
# )
# ),
# tabPanel("Visualisations",
# htmlOutput("visualisation.text"),
# fluidRow(
# column(width = 12,
# uiOutput("visualisation.selection"),
# uiOutput("predictionplot.settings")
# )
# ),
# fluidRow(
# column(width = 12,
# verbatimTextOutput("confusion.matrix")
# )
# ),
# fluidRow(
# column(width = 12,
# plotOutput("prediction.plot")
# )
# )
# )
# )
# )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.