context("test-mupp_probs_2D.R")
test_that("mupp probabilities work: two dimensions", {
set.seed(8734023)
# 0 # Misc Objects
dims <- 1:2
n_dims <- length(dims)
# 0 # R functions to calculate probs
# - GGUM
p_ggum <- function(theta, alpha, delta, tau){
e1 <- exp(alpha * ((theta - delta) - tau))
e2 <- exp(alpha * (2 * (theta - delta) - tau))
e3 <- exp(alpha * (3 * (theta - delta)))
(e1 + e2) / (1 + e1 + e2 + e3)
} # END p_ggum FUNCTION
# - MUPP (for 2D only) (intentionally manual and hard coded)
p_mupp <- function(thetas, params){
p_s <- p_ggum(thetas[ , 1], params[1, 1], params[1, 2], params[1, 3])
p_t <- p_ggum(thetas[ , 2], params[2, 1], params[2, 2], params[2, 3])
p <- p_s * (1 - p_t) / (p_s * (1 - p_t) + p_t * (1 - p_s))
P <- "dimnames<-"(cbind(p, 1 - p), NULL)
P
} # END p_mupp (2D) FUNCTION
# a # if everything is the same, should be same prob for both orders
expect_equal(p_mupp_rank_impl(thetas = rbind(c(0, 0)),
params = cbind(c(1, 1),
c(0, 0),
c(0, 0)),
dims = dims),
matrix(1/factorial(n_dims), nrow = 1, ncol = factorial(n_dims)))
# b # change theta but keep items the same
thetas <- rbind(c(0, -1))
alphas <- c(1, 1)
deltas <- c(0, 0)
taus <- c(0, 0)
params <- cbind(alphas, deltas, taus)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
p_mupp(thetas, params))
# c # change alpha but keep items the same
thetas <- rbind(c(0, 0))
alphas <- c(1, 2)
params <- cbind(alphas, deltas, taus)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
p_mupp(thetas, params))
# d # change delta but keep items the same
alphas <- c(1, 1)
deltas <- c(0, -1)
params <- cbind(alphas, deltas, taus)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
p_mupp(thetas, params))
# d # change taus but keep items the same
deltas <- c(0, 0)
taus <- c(0, -1)
params <- cbind(alphas, deltas, taus)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
p_mupp(thetas, params))
# d # change everything
thetas <- rbind(c(0, 1))
alphas <- c(1, 2)
deltas <- c(0, -1)
taus <- c(0, -1)
params <- cbind(alphas, deltas, taus)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
p_mupp(thetas, params))
# e # multiple people RANDOM, so different each time :)
n_thetas <- 5
thetas <- matrix(r_thetas_prior(n_thetas * n_dims),
nrow = n_thetas,
ncol = n_dims)
alphas <- r_alpha_prior(n_dims)
deltas <- r_delta_prior(n_dims)
taus <- r_tau_prior(n_dims)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
p_mupp(thetas, params))
# f # selecting one dimension
# - first dimension - same for everyone
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = 1),
p_mupp(thetas, params)[ , 1, drop = FALSE])
# - second dimension - same for everyone
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = 2),
p_mupp(thetas, params)[ , 2, drop = FALSE])
# - first/second dimension altering
ids <- rep(dims, length.out = n_thetas)
id_mat <- cbind(seq_len(n_thetas), ids)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = ids),
cbind(p_mupp(thetas, params)[id_mat]))
# - first/second dimension random order
ids <- sample(dims, size = n_thetas, replace = TRUE)
id_mat <- cbind(seq_len(n_thetas), ids)
expect_equal(p_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = ids),
cbind(p_mupp(thetas, params)[id_mat]))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.