#' backend
#' @export
backend <- R6::R6Class("backend",
#inherit = backends,
private = list(
model_fit = NULL,
model_predict = NULL,
model_imp = NULL,
model_save = NULL,
model_load = NULL,
model_fit_pair = NULL,
model_predict_pair = NULL,
model_backend = function(){
### keras
if(self$meta$backend == "keras"){
private$model_fit <- fit_keras
private$model_predict <- predict_keras
#private$model_imp <- feature_imp_keras
private$model_save <- save_keras
private$model_load <- load_keras
}
### xgboost
if(self$meta$backend == "xgboost"){
private$model_fit <- deeplyr::fit_xgboost
private$model_predict <- deeplyr::predict_xgboost
private$model_imp <- deeplyr::feature_imp_xgboost
private$model_save <- deeplyr::save_xgboost
private$model_load <- deeplyr::load_xgboost
}
### lightgbm
if(self$meta$backend == "lightgbm"){
private$model_fit <- fit_lightgbm
private$model_predict <- predict_lightgbm
}
### catboost
if(self$meta$backend == "catboost"){
private$model_fit <- fit_catboost
private$model_predict <- predict_catboost
private$model_imp <- h2o_feature_imp
}
# if(self$meta$backend == "rgf"){
# private$model_fit <- fit_rgf
# private$model_predict <- predict_rgf
# }
### h2o
if(stringr::str_detect(self$meta$backend, "h2o_")){
private$model_predict <- deeplyr::predict_h2o
private$model_imp <- deeplyr::feature_imp_h2o
private$model_save <- deeplyr::save_h2o
private$model_load <- deeplyr::load_h2o
if(self$meta$backend == "h2o_glm") private$model_fit <- deeplyr::fit_h2o_glm
if(self$meta$backend == "h2o_rf") private$model_fit <- deeplyr::fit_h2o_rf
if(self$meta$backend == "h2o_nb") private$model_fit <- deeplyr::fit_h2o_nb
if(self$meta$backend == "h2o_svm") private$model_fit <- deeplyr::fit_h2o_svm
if(self$meta$backend == "h2o_gbm") private$model_fit <- deeplyr::fit_h2o_gbm
if(self$meta$backend == "h2o_xgb") private$model_fit <- deeplyr::fit_h2o_xgb
if(self$meta$backend == "h2o_dnn") private$model_fit <- deeplyr::fit_h2o_dnn
}
### sklearn
if(stringr::str_detect(self$meta$backend, "sk_")){
private$model_predict <- predict_sk
if(self$meta$backend == "sk_glm") private$model_fit <- fit_sk_glm
if(self$meta$backend == "sk_tree") private$model_fit <- fit_sk_tree
}
### ranger
if(self$meta$backend == "ranger"){
private$model_fit <- fit_ranger
private$model_predict <- predict_ranger
}
### randomForest
if(self$meta$backend == "randomForest"){
private$model_fit <- fit_randomForest
private$model_predict <- predict_randomForest
}
### rpart
if(self$meta$backend == "rpart"){
private$model_fit <- fit_rpart
private$model_predict <- predict_rpart
private$model_imp <- feature_imp_rpart
private$model_save <- save_rpart
private$model_load <- load_rpart
}
### glmnet
if(self$meta$backend == "glmnet"){
private$model_fit <- fit_glmnet
private$model_predict <- predict_glmnet
private$model_save <- save_glmnet
private$model_load <- load_glmnet
}
### FEATURES
### goalmodel
if(self$meta$backend == "goalmodel"){
private$model_fit_pair <- fit_goalmodel
private$model_predict_pair <- predict_goalmodel
}
### elo
if(self$meta$backend == "elo"){
private$model_fit_pair <- fit_elo
private$model_predict_pair <- predict_elo
}
### comperank
if(self$meta$backend == "comperank"){
private$model_fit_pair <- fit_comperank
private$model_predict_pair <- predict_comperank
}
### fastnb
if(self$meta$backend == "fastnb"){
private$model_fit_pair <- fit_fastnb
private$model_predict_pair <- predict_fastnb
}
### pi
if(self$meta$backend == "pi"){
private$model_fit_pair <- fit_pi
private$model_predict_pair <- predict_pi
}
### PlayerRatings
if(self$meta$backend == "PlayerRatings"){
private$model_fit_pair <- fit_PlayerRatings
private$model_predict_pair <- predict_PlayerRatings
}
### soccerstats
if(self$meta$backend == "soccerstats"){
private$model_fit_pair <- fit_soccerstats
private$model_predict_pair <- predict_soccerstats
}
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.