Description Usage Arguments Value
Word embedding + 1D pooled convolution + gru layer
1 2 3 4 | keras_cnn_gru(input_dim, embed_dim = 128, seq_len = 50,
filter_size = 5, n_filters = 100, pool_size = 4, gru_dim = 64,
gru_drop = 0.2, bidirectional = F, output_dim = 2,
output_fun = "softmax")
|
input_dim |
Number of unique vocabluary/tokens |
embed_dim |
Number of word vectors |
seq_len |
Length of the input sequences |
filter_size |
the window size (kernel_size) |
n_filters |
the number of convolutional filters |
pool_size |
pooling dimension (filters) |
gru_dim |
Number of lstm neurons (default 32) |
gru_drop |
default is 2 |
bidirectional |
default is F |
output_dim |
Number of neurons of the output layer |
output_fun |
Output activation function |
keras model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.