Description Usage Arguments Details Value
Word embedding + 1D pooled convolution + gru layer
1 2 3 | keras_multi_cnn(input_dim, embed_dim = 128, seq_len = 50,
filter_sizes = c(1, 2, 3, 4), num_filters = 50, output_dim = 2,
output_fun = "softmax")
|
input_dim |
Number of unique vocabluary/tokens |
embed_dim |
Number of word vectors |
seq_len |
Length of the input sequences |
output_dim |
Number of neurons of the output layer |
output_fun |
Output activation function |
n_filters |
the number of convolutional filters |
filter_size |
the window size (kernel_size) |
pool_size is determined automatically
keras model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.