piBeam: Compute prediction intervals for state dependent Poisson...

Description Usage Arguments

Description

Compute prediction intervals for state dependent Poisson process for beam experiments

Usage

1
2
3
piBeam(stresses, deltat, truss, start, toPred, link, gradient, type,
  method = c("depth", "chisquared", "LR", "naive"), plot = FALSE, xlim,
  alpha = 0.05, addTrue = TRUE, ...)

Arguments

stresses

list of values of the influental variable for indepedent fatigue experiments.

deltat

list of waiting times for indepedent fatigue experiments

truss

index of list entry in stresses and deltat for which the prediction should be made

start

starting value for the optimization, length four

toPred

integer value indicating the number of events to be predicted

link

[function(theta, x)]
link function for exponential distribution

gradient

[function(x, theta, ...)]
gradient of link function

type

[integer]
if link function is not given a collection of given link function is available, see linkfun

method

one of "depth" (default), "chisquared". Method for generating confidence set of parameter theta

plot

logical value indicating whether the prediction intervals should be plotted or not


szugat/predfat documentation built on May 31, 2019, 12:50 a.m.