estip2: Unidimensional Item Response Theory parameter estimation

Description Usage Arguments Value Examples

View source: R/estip2.R

Description

Unidimensional Item Response Theory parameter estimation

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
estip2(
  x,
  fc = 3,
  IDc = 1,
  Gc = NULL,
  bg = 1,
  Ntheta = 31,
  D = 1.702,
  method = "Fisher_Scoring",
  model = "2PL",
  max_func = "N",
  rm_list = NULL,
  mu_th = 0,
  sigma_th = 1,
  min_th = -4,
  max_th = 4,
  eEM = 0.001,
  eMLL = 0.001,
  maxiter_em = 100,
  th_dist = "normal",
  fix_a = 1,
  mu_a = 0,
  sigma_a = 1,
  mu_b = 0,
  sigma_b = 1,
  mu_c = 0,
  sigma_c = 1,
  w_c = 1,
  alpha = 0.5,
  lambda = 1,
  print = 0
)

Arguments

x

DataFrame.

fc

the first column.

IDc

the ID column.

Gc

the grade column.

bg

a mumber of base grade.

Ntheta

the number of the nodes of theta dist.

D

a scale constant.

method

the method of optimiser. Default is "Fisher_Scoring", but optim function also be able to use.

model

a model vector

max_func

a character of object function. "N" is MML-EM, "B" is marginal Bayes and "R" is Regularized MML.

rm_list

a vector of item U want to remove for estimation. NOT list.

mu_th

a hyper parameter of normal dist for theta

sigma_th

a hyper parameter of normal dist for theta

min_th

a minimum value of theta distribution

max_th

a maximum value of theta distribution

eEM

a convergence criterion related to item parameters in EM cycle.

eMLL

a convergence criterion related to negative twice log likelihood in EM cycle.

maxiter_em

the number of iteration of EM cycle.

th_dist

a type of theta dist."normal" or "empirical"

fix_a

a fix parameter for slope parameter of 1PLM

mu_a

a hyper parameter for slope parameter prior distribution(lognormal) in marginal Bayes estimation.

sigma_a

a hyper parameter for slope parameter prior distribution(lognormal) in marginal Bayes estimation.

mu_b

a hyper parameter for location parameter prior distribution(normal) in marginal Bayes estimation.

sigma_b

a hyper parameter for location parameter prior distribution(normal) in marginal Bayes estimation.

mu_c

a hyper parameter for lower asymptote parameter prior distribution(beta) in marginal Bayes estimation.

sigma_c

a hyper parameter for lower asymptote parameter prior distribution(beta) in marginal Bayes estimation.

w_c

a weight parameter for lower asymptote parameter prior distribution(beta) in marginal Bayes estimation.

alpha

tuning parameter of elastic net penalty.

lambda

tuning parameter of elastic net penalty.

print

How much information you want to display? from 1 to 3. The larger, more information is displayed.

Value

the output is a list that has item parameters data.frame and these Standard Error.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
# MMLE
res1 <- estip2(x=sim_data_2, Gc=NULL, fc=2, Ntheta=21)
# check the parameters
res1$para
res1$SE

# Multigroup MMLE
res2 <- estip2(x=sim_dat_st, Gc=2, bg=3, fc=3, Ntheta=10)

# Marginal Bayes
res3 <- estip2(x=sim_data_2, Gc=NULL, fc=2, Ntheta=21, max_func="B")

# Regularized MMLE
res4 <- estip2(x=sim_data_2, Gc=NULL, fc=2, Ntheta=21, max_func="R")

takuizum/irtfun2 documentation built on May 10, 2020, 8:30 a.m.