Description Usage Arguments Value Examples
Unidimensional Item Response Theory parameter estimation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | estip2(
x,
fc = 3,
IDc = 1,
Gc = NULL,
bg = 1,
Ntheta = 31,
D = 1.702,
method = "Fisher_Scoring",
model = "2PL",
max_func = "N",
rm_list = NULL,
mu_th = 0,
sigma_th = 1,
min_th = -4,
max_th = 4,
eEM = 0.001,
eMLL = 0.001,
maxiter_em = 100,
th_dist = "normal",
fix_a = 1,
mu_a = 0,
sigma_a = 1,
mu_b = 0,
sigma_b = 1,
mu_c = 0,
sigma_c = 1,
w_c = 1,
alpha = 0.5,
lambda = 1,
print = 0
)
|
x |
DataFrame. |
fc |
the first column. |
IDc |
the ID column. |
Gc |
the grade column. |
bg |
a mumber of base grade. |
Ntheta |
the number of the nodes of theta dist. |
D |
a scale constant. |
method |
the method of optimiser. Default is "Fisher_Scoring", but |
model |
a model vector |
max_func |
a character of object function. "N" is MML-EM, "B" is marginal Bayes and "R" is Regularized MML. |
rm_list |
a vector of item U want to remove for estimation. NOT list. |
mu_th |
a hyper parameter of normal dist for theta |
sigma_th |
a hyper parameter of normal dist for theta |
min_th |
a minimum value of theta distribution |
max_th |
a maximum value of theta distribution |
eEM |
a convergence criterion related to item parameters in EM cycle. |
eMLL |
a convergence criterion related to negative twice log likelihood in EM cycle. |
maxiter_em |
the number of iteration of EM cycle. |
th_dist |
a type of theta dist."normal" or "empirical" |
fix_a |
a fix parameter for slope parameter of 1PLM |
mu_a |
a hyper parameter for slope parameter prior distribution(lognormal) in marginal Bayes estimation. |
sigma_a |
a hyper parameter for slope parameter prior distribution(lognormal) in marginal Bayes estimation. |
mu_b |
a hyper parameter for location parameter prior distribution(normal) in marginal Bayes estimation. |
sigma_b |
a hyper parameter for location parameter prior distribution(normal) in marginal Bayes estimation. |
mu_c |
a hyper parameter for lower asymptote parameter prior distribution(beta) in marginal Bayes estimation. |
sigma_c |
a hyper parameter for lower asymptote parameter prior distribution(beta) in marginal Bayes estimation. |
w_c |
a weight parameter for lower asymptote parameter prior distribution(beta) in marginal Bayes estimation. |
alpha |
tuning parameter of elastic net penalty. |
lambda |
tuning parameter of elastic net penalty. |
print |
How much information you want to display? from 1 to 3. The larger, more information is displayed. |
the output is a list that has item parameters data.frame and these Standard Error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # MMLE
res1 <- estip2(x=sim_data_2, Gc=NULL, fc=2, Ntheta=21)
# check the parameters
res1$para
res1$SE
# Multigroup MMLE
res2 <- estip2(x=sim_dat_st, Gc=2, bg=3, fc=3, Ntheta=10)
# Marginal Bayes
res3 <- estip2(x=sim_data_2, Gc=NULL, fc=2, Ntheta=21, max_func="B")
# Regularized MMLE
res4 <- estip2(x=sim_data_2, Gc=NULL, fc=2, Ntheta=21, max_func="R")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.