Description Usage Arguments Value Author(s) References See Also Examples
SigClust (Statistical significance of clustering) is a statistical method for testing the significance of clustering results. SigClust can be applied to assess the statistical significance of splitting a data set into two clusters. SigClust studies whether clusters are really there, using the 2-means (k = 2) clustering index as a statistic. It assesses the significance of clustering by simulation from a single null Gaussian distribution. Null Gaussian parameters are estimated from the data. Here we apply the SigClust to assess the statistical significance of pairwise subtypes. "sigclust" package should be installed.
1 | sigclustTest(Data, group, nsim = 1000, nrep = 1, icovest = 1)
|
Data |
A data matrix representing the genomic data measured in a set of samples. For the matrix, the rows represent the genomic features, and the columns represents the samples. |
group |
The subtypes label of each sample |
nsim |
This is a parameter inherited from sigclust() in "sigclust" Package. Number of simulated Gaussian samples to estimate the distribution of the clustering index for the main p-value computation. |
nrep |
This is a parameter inherited from sigclust() in "sigclust" Package. Number of steps to use in 2-means clustering computations (default=1, chosen to optimize speed). |
icovest |
This is a parameter inherited from sigclust() in "sigclust" Package. Covariance estimation type: 1. Use a soft threshold method as constrained MLE (default); 2. Use sample covariance estimate (recommended when diagnostics fail); 3. Use original background noise threshold estimate (from Liu, et al, (2008)) ("hard thresholding"). |
A matrix indicates the p-value between pairwise subtypes.
Xu,Taosheng taosheng.x@gmail.com,Thuc Le Thuc.Le@unisa.edu.au
Liu, Yufeng, Hayes, David Neil, Nobel, Andrew and Marron, J. S, 2008, Statistical Significance of Clustering for High-Dimension, Low-Sample Size Data, Journal of the American Statistical Association 103(483) 1281-1293.
Huang, Hanwen, Yufeng Liu, Ming Yuan, and J. S. Marron. "Statistical Significance of Clustering Using Soft Thresholding." Journal of Computational and Graphical Statistics, no. just-accepted (2014): 00-00.
1 2 3 4 5 6 7 8 9 | data(GeneExp)
data(miRNAExp)
data(time)
data(status)
GBM=list(GeneExp=GeneExp,miRNAExp=miRNAExp)
result=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result$group
sigclust1=sigclustTest(miRNAExp,group, nsim=500, nrep=1, icovest=3)
sigclust2=sigclustTest(miRNAExp,group, nsim=1000, nrep=1, icovest=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.