Description Usage Arguments Details Value Author(s) References Examples
Computes the generalized matrix decomposition of X.
1 | GMD(X, H, Q, K)
|
X |
An n x p data matrix. |
H |
An n x n positive semi-definite similarity kernel. |
Q |
An p x p positive semi-definite similarity kernel. |
K |
a scalar specifying the dimension of GMD components (see Details). |
The K-dimensional GMD of X with respect to H and Q is given by X = USV^T, where
(U, S, V) = argmin_{U,S,V} ||X - USV^T||^2_{H, Q},
subject to U^THU = I_K, V^TQV = I_K and diag(S) ≥ 0. Here, for any n x p matrix A, ||A||^2_H,Q = tr(A^THAQ).
A list of the GMD components U, S, V, H and Q (see Details).
Parker Knight and Yue Wang ywang2310@fredhutch.org
Allen, G. I., L. Grosenick, and J. Taylor (2014). A generalized least-square matrix decom- position. Journal of the American Statistical Association 109(505), 145–159.
1 2 3 4 5 6 7 8 9 10 11 | |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.