Description Usage Arguments Details Value
View source: R/ExternalValidatePlp.R
This function extracts data using a user specified connection and cdm_schema, applied the model and then calcualtes the performance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | externalValidatePlp(
plpResult,
connectionDetails,
validationSchemaTarget,
validationSchemaOutcome,
validationSchemaCdm,
databaseNames,
validationTableTarget = "cohort",
validationTableOutcome = "cohort",
validationIdTarget = NULL,
validationIdOutcome = NULL,
oracleTempSchema = NULL,
verbosity = "INFO",
keepPrediction = F,
sampleSize = NULL,
outputFolder
)
|
plpResult |
The object returned by runPlp() containing the trained model |
connectionDetails |
The connection details for extracting the new data |
validationSchemaTarget |
A string or vector of strings specifying the database containing the target cohorts |
validationSchemaOutcome |
A string or vector of strings specifying the database containing the outcome cohorts |
validationSchemaCdm |
A string or vector of strings specifying the database containing the cdm |
databaseNames |
A string of vector of strings specifying sharing friendly database names corresponding to validationSchemaCdm |
validationTableTarget |
A string or vector of strings specifying the table containing the target cohorts |
validationTableOutcome |
A string or vector of strings specifying the table containing the outcome cohorts |
validationIdTarget |
An iteger specifying the cohort id for the target cohort |
validationIdOutcome |
An iteger specifying the cohort id for the outcome cohort |
oracleTempSchema |
The temp oracle schema requires read/write |
verbosity |
Sets the level of the verbosity. If the log level is at or higher in priority than the logger threshold, a message will print. The levels are:
|
keepPrediction |
Whether to keep the predicitons for the new data |
sampleSize |
If not NULL, the number of people to sample from the target cohort |
outputFolder |
If you want to save the results enter the directory to save here |
Users need to input a trained model (the output of runPlp()) and new database connections. The function will return a list of length equal to the number of cdm_schemas input with the performance on the new data
A list containing the performance for each validation_schema
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.