Description Usage Arguments Value Author(s) References Examples
For data with known labels, this function constructs a connection matrix between unique labels, such as unique cell types. The returned matrix can be used for subject-wise network construction.
1  | connection.matrix(mat, label, threshold = 0.15, closest = TRUE)
 | 
mat | 
 n*n dissimilarity (1-correlation) matrix (e.g. obtained by QuantNorm).  | 
label | 
 n-dimension vector for the labels of the n subjects. Replicates share the same label.  | 
threshold | 
 A number between 0 to 1. Two groups will be regarded as connected if average 1-correlation < threshold.  | 
closest | 
 True or False. Whether connect the closest group or not if the closest group cannot satisfy the threshold condition.  | 
Returns the connection matrix between unique labels.
Teng Fei. Email: tfei@emory.edu
Fei et al (2018), Mitigating the adverse impact of batch effects in sample pattern detection, Bioinformatics, https://doi.org/10.1093/bioinformatics/bty117.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  | library(network); library(ggplot2); library(sna); library(GGally) #drawing network graph
data("ENCODE")
#Assigning the batches based on species
batches <- c(rep(1,13),rep(2,13))
#QuantNorm correction
corrected.distance.matrix <- QuantNorm(ENCODE,batches,method='row/column', cor_method='pearson',
                                       logdat=FALSE,standardize = TRUE, tol=1e-4)
#Constructing connection matrix
mat <- connection.matrix(mat=corrected.distance.matrix,label=colnames(corrected.distance.matrix))
#Creating network object and plot
ENCODE.net=network(mat, directed=FALSE)
ENCODE.net %v% "Species" <- c(rep('Human',13),rep('Mouse',13))
p0 <- ggnet2(ENCODE.net,label=TRUE,color = 'Species', palette = "Set2",
             size = 3, vjust = -0.6,mode = "kamadakawai",label.size = 3,
             color.legend = 'Species')+theme(legend.position = 'bottom')
plot(p0)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.