View source: R/multivariate_constructors.R
| Multivariate.Correlated.Uniform.Distribution | R Documentation |
Uses a rough approximation to generate a multivariate normal distribution such that the correlations between variables are approximately equal to the given correlation.matrix. Specifically, generates random samples from a multivariate normal distribution with mean=0 and covariance matrix = cov2cor(correlation.matrix + 0.04*I)
Multivariate.Correlated.Uniform.Distribution(
correlation.matrix,
min = rep(0, dim(correlation.matrix)[1]),
max = rep(1, dim(correlation.matrix)[1]),
var.names = NULL
)
correlation.matrix |
The matrix specifying how variables should be correlated |
min, max |
The vectors of minima and maxima for each variable in the distribution. If given a scalar value, assumes that value applies for all variables |
var.names |
The names of the variables in the distribution. If NULL, uses the names of mu, the row names of sigma, or the column names of sigma, in that order |
Other Distribution Constructors:
Autoregressive.Multivariate.Normal.Distribution(),
Bernoulli.Distribution(),
Beta.Distribution(),
Binomial.Distribution(),
Canonical.Mixture.Distribution(),
Compound.Symmetry.Multivariate.Normal.Distribution(),
Constant.Distribution(),
Discrete.Set.Distribution(),
Empiric.Distribution(),
Logitnormal.Distribution(),
Logitnormal.Mixture(),
Logituniform.Distribution(),
Lognormal.Distribution(),
Lognormal.Mixture(),
Loguniform.Distribution(),
Multivariate.Logitnormal.Distribution(),
Multivariate.Lognormal.Distribution(),
Multivariate.Normal.Distribution(),
Normal.Distribution(),
Normal.Mixture(),
Smoothed.Empiric.Distribution(),
Transformed.Multivariate.Normal.Distribution(),
Transformed.Normal.Distribution(),
Transformed.Normal.Mixture(),
Uniform.Distribution(),
Univariate.Canonical.Distribution(),
join.distributions()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.