View source: R/multivariate_constructors.R
Multivariate.Correlated.Uniform.Distribution | R Documentation |
Uses a rough approximation to generate a multivariate normal distribution such that the correlations between variables are approximately equal to the given correlation.matrix. Specifically, generates random samples from a multivariate normal distribution with mean=0 and covariance matrix = cov2cor(correlation.matrix + 0.04*I)
Multivariate.Correlated.Uniform.Distribution(
correlation.matrix,
min = rep(0, dim(correlation.matrix)[1]),
max = rep(1, dim(correlation.matrix)[1]),
var.names = NULL
)
correlation.matrix |
The matrix specifying how variables should be correlated |
min , max |
The vectors of minima and maxima for each variable in the distribution. If given a scalar value, assumes that value applies for all variables |
var.names |
The names of the variables in the distribution. If NULL, uses the names of mu, the row names of sigma, or the column names of sigma, in that order |
Other Distribution Constructors:
Autoregressive.Multivariate.Normal.Distribution()
,
Bernoulli.Distribution()
,
Beta.Distribution()
,
Binomial.Distribution()
,
Canonical.Mixture.Distribution()
,
Compound.Symmetry.Multivariate.Normal.Distribution()
,
Constant.Distribution()
,
Discrete.Set.Distribution()
,
Empiric.Distribution()
,
Logitnormal.Distribution()
,
Logitnormal.Mixture()
,
Logituniform.Distribution()
,
Lognormal.Distribution()
,
Lognormal.Mixture()
,
Loguniform.Distribution()
,
Multivariate.Logitnormal.Distribution()
,
Multivariate.Lognormal.Distribution()
,
Multivariate.Normal.Distribution()
,
Normal.Distribution()
,
Normal.Mixture()
,
Smoothed.Empiric.Distribution()
,
Transformed.Multivariate.Normal.Distribution()
,
Transformed.Normal.Distribution()
,
Transformed.Normal.Mixture()
,
Uniform.Distribution()
,
Univariate.Canonical.Distribution()
,
join.distributions()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.